Skip to main content

Advertisement

Log in

Microstructure, Mechanical, and Corrosion Properties of Cast Heat-Resistant Al–4Zn–4Mg–4Cu–Zr–Y(Er) Alloy

  • Published:
Metallurgist Aims and scope

In this study, we analyze the microstructure, phase composition, aging process, and a set of characteristics of the performance properties of new casting Al–4Zn–4Mg–4Cu–0.2Zr alloys doped with yttrium (Y) or erbium (Er). Doping with Y or Er has been shown to decrease hot brittleness, enhance corrosion resistance, and slightly decrease strength characteristics at up to 200° C. When alloyed with Y or Er, enhanced casting properties are ensured through an increase in the proportion of eutectics and modification of the grain structure. The Al8Cu4Y, (Al, Cu)11Y3, Al8Cu4Er, and Al3Er phases containing Y and Er after homogenization at 465° C retain the shape of branched crystals, resulting in alloys with low ductility at up to 200° C. In all the alloys, after stretching at 250°C, the elongation considerably increases, and the yield strength is approximately the same and lies in the range of 217–222 MPa. Alloying with Y or Er results in less softening with increasing test temperature and considerably higher corrosion resistance under electrochemical corrosion conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. N. S. Gerchikova, I. N. Fridlyander, N. I. Zaitseva, and N. N. Kirkina, “Change in the structure and properties of Al–Zn–Mg alloys,” Met. Sci. Heat Treat, 14(3), 233–236 (1972).

    Article  Google Scholar 

  2. V. S. Zolotorevsky, Microstructure and Mechanical Properties of Cast Aluminum Alloys, Thesis of PhD in Engineering, MISIS, Moscow (1978).

  3. Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, M. Guo, and L. Cao, “Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios,” J. Mater. Sci. Tech., 85, 106–117 (2021).

    Article  CAS  Google Scholar 

  4. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys [in Russian], Nauka, Moscow (1966).

  5. G. L. Krasilnikov, Development and Research of High-Strength Cast Alloy Based on the Aluminum–Zinc–Magnesium System, Thesis of PhD in Engineering, MISIS, Moscow (1978).

  6. N. S. Postnikov, Hardening of Aluminum Alloys and Castings [in Russian], Metallurgiya, Moscow (1983).

  7. I. S. Gotsev, Structural-Phase Analysis of the Al–Cu–Si–Mn System and Development of a High-Strength and Heat-Resistant Alloy, Abstract of Thesis of PhD in Engineering, VIAM, Moscow (1989).

  8. I. A. Zavarzin, Research and Development of Secondary Casting Alloys Based on the Al–Mg–Zn–Cu System, Thesis of PhD in Engineering, MISIS, Moscow (1981).

  9. V. S. Zolotorevsky, A. D. Ratner, N. A. Belov, A. A. Aksenov, V. F. Alekseev, and V. A. Baev, “Structure of new high-strength cast aluminum alloys based on technical aluminum”, in: Metallurgy and Processing of Non-Ferrous Alloys [in Russian], Nauka, Moscow (1992), pp. 142–157.

  10. N. A. Belov, Regularities of the Influence of Composition and Structure on the Fracture Toughness of Cast Alloys of the Al–Mg–Zn–Cu System and the Development of a High-Strength Alloy Based on This System with a High Content of Impurities, Thesis of PhD in Engineering, MISIS, Moscow (1985).

  11. N. A. Belov and V. S. Zolotorevsky, “New high-strength casting alloys based on aluminum-nickel eutectics (nikalins),” in: Materials of the Seminar “Scientific-Technological Ensuring the Activities of Enterprises, Institutes, and Companies,” MGIU, Moscow (2003), pp. 584–593.

  12. N. A. Belov and V. S. Zolotorevsky, “Casting alloys based on aluminum-nickel eutectics (nikalins) as a possible alternative to silumins,” Tsvetn. Metally, No. 2, 99–105 (2002).

  13. V. V. Cheverikin, Influence of Eutectic-Forming Elements on the Structure and Properties of High-Strength Alloys of the Al–Zn–Mg System, Thesis of PhD in Engineering, MISIS, Moscow (2007).

  14. Y. Pan, D. Zhang, H. Liu, L. Zhuang, and J. Zhang, “Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(–Cu) alloys,” J. Alloys Compd., 853 (2021).

  15. V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematical modeling,” Phys. Met. Metallogr., 115(3), 286–294 (2014).

    Article  Google Scholar 

  16. A. V. Pozdniakov, V. S. Zolotorevskiy, and O. I. Mamzurina, “Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res., 28(5), 318–321 (2015).

    Article  CAS  Google Scholar 

  17. P. K. Shurkin, T. K. Akopyan, S. P. Galkin, and A. S. Aleshchenko, “Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al–Zn–Mg–Ni–Fe system,” Met. Sci. Heat Treat., 60, 764–769 (2019).

    Article  CAS  Google Scholar 

  18. N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt% Zr-alloy,” Acta Metallurgica, 17, 269–278 (1969).

    Article  CAS  Google Scholar 

  19. E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al–Zr solid solution,” Acta Metallurgica, 25, 1039–1046 (1977).

    Article  CAS  Google Scholar 

  20. K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr alloys,” Metal. Mater. Trans. A., 38, 2552–2563 (2007)

    Article  Google Scholar 

  21. N. A. Belov, A. N. Alabin, and A. Yu. Prokhorov, “The influence of zirconium additives on the strength and electrical resistance of cold-rolled aluminum sheets,” Izv. Vysch. Uch. Zav. Tsvetn. Metallurg., No. 4, 42–47 (2009).

  22. N. A. Belov, A. N. Alabin, and A. Yu. Prokhorov, “Effect of annealing on electrical resistance and mechanical properties of colddeformed Al–0.6% (wt.) Zr alloy,” Tsvetn. Metally, No. 10, 65–68 (2009).

  23. P. H. L. Souza, C. A. S. de Oliveira, and J. M. do Vale Quaresma, “Precipitation hardening in dilute Al–Zr alloys,” J. Mater. Res. Technol., 7, 66–72 (2018).

  24. V. V. Zakharov and I. A. Fisenko, “Effect of homogenization on the structure and properties of alloy of the Al–Zn–Mg–Sc–Zr system,” Metal Sci. Heat Treat., 60, 354–359 (2018).

    Article  CAS  Google Scholar 

  25. A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterization of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. (UK), 34(12), 1489–1496 (2018).

    Article  CAS  Google Scholar 

  26. S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr., 121(5), 476–482 (2020).

    Article  CAS  Google Scholar 

  27. A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr., 120(6), 614–619 (2019).

    Article  CAS  Google Scholar 

  28. A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng.: A., 758, 28–35 (2019).

  29. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. (UK), 36(4), 453–459 (2020).

    Article  CAS  Google Scholar 

  30. S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM, 73(10), 3092–3101 (2021).

    Article  CAS  Google Scholar 

  31. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr., 121(12), 1227–1232 (2020).

    Article  CAS  Google Scholar 

  32. S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci., 10, 5345 (2020).

  33. S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr., 122, 908–914 (2021).

    Article  CAS  Google Scholar 

  34. S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr., 122, 915–922 (2021).

    Article  CAS  Google Scholar 

  35. M. V. Glavatskikh, R. Yu. Barkov, M. G. Khomutov, and A. V. Pozdniakov, “The effects of yttrium and erbium on the phase composition and aging of the Al–Zn–Mg–Cu–Zr alloy with a high copper content,” Phys. Met. Metallogr., 123, 617–623 (2022).

    Article  CAS  Google Scholar 

  36. M. V. Glavatskikh, R. Yu. Barkov, M. G. Khomutov, and A. V. Pozdniakov, “Effect of manganese on phase composition and mechanical properties of casting Al–Zn–Mg–Cu–Zr–Y(Er) alloys,” Phys. Met. Metallogr., in press (2023).

  37. H. Zhong, S. Li, J. Wu, H. Deng, J. Chen, N. Yan, Z. Chen, and L. Duan, “Effects of retrogression and re-aging treatment on precipitation behavior, mechanical and corrosion properties of a Zr + Er modified Al–Zn–Mg–Cu alloy,” Mater. Charact., 183, 111617 (2022).

    Article  CAS  Google Scholar 

  38. Z. Zhang, D. Li, S. Li, H. Deng, S. Zhang, J. Fang, H. Yuan, B. Deng, and L. Qi, “Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si–Zr–Er modified Al–Zn–Mg–Cu alloy prepared by selective laser melting technology,” Mater. Charact., 194, 112459 (2022).

    Article  CAS  Google Scholar 

  39. Y. Wang, X. Wu, L. Cao, X. Tong, M. J. Couper, and Q. Liu, “Effect of trace Er on the microstructure and properties of Al–Zn–Mg–Cu–Zr alloys during heat treatments,” Mater. Sci. Eng.: A., 792, 139807 (2020).

  40. J. T. Lu, H. Huang, H. Wu, S. P. Wen, K. Y. Gao, X. L. Wu, and Z. R. Nie, “Mechanical properties and corrosion behavior of a new RRA-treated Al–Zn–Mg–Cu–Er–Zr alloy,” Rare Met., 42, 672–679 (2023).

    Article  Google Scholar 

  41. Yu. I. Kosov and V. Yu. Bazhin, “Synthesis of an aluminum-erbium master alloy from chloride-fluoride melts,” Russ. Metall. (Metally), 2018(2), 139–148 (2018).

    Article  Google Scholar 

  42. S. Savchenkov, Yu. Kosov, V. Bazhin, K. Krylov, and R. Kawalla, “Microstructural master alloys features of aluminum-erbium system,” Crystals, 11(11), 1353 (2021).

    Article  CAS  Google Scholar 

  43. Y. I. Kosov and V. Y. Bazhin, “Features of phase formation during aluminothermal preparation of aluminum-erbium master alloy,” Metallurgist, 62(5-6), 440–448 (2018).

    Article  CAS  Google Scholar 

  44. Y. I. Kosov, V. Y. Bazhin, and V. G. Povarov, “Interaction of erbium fluoride with alkali metal chloride-fluoride melts in synthesizing an Al-Er master alloy,” Russ. Metall. (Metally), 2018(6), 539–544 (2018).

    Article  Google Scholar 

  45. Y. I. Kosov and V. Y. Bazhin, “Preparation of novel Al–Er master alloys in chloride-fluoride melt,” Mater. Sci. Forum, 918, 21–27 (2018).

    Article  Google Scholar 

  46. Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, and L. Cao, “Co-precipitation of T′ and η′ phase in Al–Zn–Mg–Cu alloys,” Mater. Charact., 169, 110610 (2020).

    Article  CAS  Google Scholar 

  47. S. Hou, P. Liu, D. Zhang, J. Zhang, and L. Zhuang, “Precipitation hardening behavior and microstructure evolution of Al–5.1Mg–0.15Cu alloy with 3.0Zn (wt.%) addition,” J. Mater. Sci., 53(5), 3846–3861 (2018).

    Article  CAS  Google Scholar 

  48. J. G. Kaufman, Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures, ASM International (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Glavatskikh.

Additional information

Translated from Metallurg, Vol. 67, No. 9, pp. 33–41, September, 2023, Russian DOI:https://doi.org/10.52351/00260827_2023_09_33.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glavatskikh, M.V., Gorlov, L.E., Barkov, R.Y. et al. Microstructure, Mechanical, and Corrosion Properties of Cast Heat-Resistant Al–4Zn–4Mg–4Cu–Zr–Y(Er) Alloy. Metallurgist 67, 1279–1292 (2024). https://doi.org/10.1007/s11015-024-01620-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-024-01620-w

Keywords

Navigation