Skip to main content
Log in

Nanopore Heterogeneity and Accessibility in Oil and Gas Bearing Cretaceous KG (Raghampuram) Shale, KG Basin, India: An Advanced Multi-analytical Study

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This study investigated the impact of pore accessibility and complexity on gas storage, transport, and recovery potential in the little-studied thermally mature Raghampuram shale samples collected from 2930 to 2987 m depth of Krishna–Godavari basin, India. Our findings reveal that sample nature (powdered, chipped, or cores) and assessment methods significantly influence pore accessibility evaluation, highlighting a research gap in the interpretation of irregularity, complexity, and heterogeneity of shale pore structure using unreliable monofractal theories. Employing a multiscale methodology involving low-pressure N2 and CO2 sorption, synchrotron small-angle scattering, and He-pycnometry techniques, we estimated accessibility in powder and core samples. Powder samples displayed a pore accessibility range of 36.07–106.94%, which was a substantial increase (154.54–423.07%) compared to that of solid core samples (1.61–4.16%). Total organic carbon was found to influence closed pore formation, while clay, carbonate, and quartz + K-feldspar contributed to open pores. Multifractal analyses comparing pore heterogeneity and complexity between accessible and inaccessible pores demonstrated higher heterogeneity and complexity in the latter, with accessible pores exhibiting simpler characteristics. Pore size distributions of both accessible and total pores (includes both accessible and inaccessible pores) exhibited multifractal behavior. Our findings emphasize the significance of evaluating pore accessibility and heterogeneity in shale-gas analysis, providing fresh insights into the interlinked elements of pore structure, composition, and gas recovery potential, thus advancing reservoir characterization understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data Availability

The raw data and materials related to this research are available in the Mendeley Data Repository (https://doi.org/10.17632/ztjbz25jpf.1).

References

  • Anovitz, L. M., Cole, D. R., Sheets, J. M., Swift, A., Elston, H. W., Welch, S., et al. (2015). Effects of maturation on multiscale (nanometer to millimeter) porosity in the Eagle Ford Shale. Interpretation, 3(3), SU59–SU70.

    Article  Google Scholar 

  • Bahadur, J., Radlinski, A. P., Melnichenko, Y. B., Mastalerz, M., & Schimmelmann, A. (2015). Small-angle and ultrasmall-angle neutron scattering (SANS/USANS) study of new Albany shale: A treatise on microporosity. Energy and Fuels, 29(2), 567–576.

    Article  CAS  Google Scholar 

  • Bahadur, J., Ruppert, L. F., Pipich, V., Sakurovs, R., & Melnichenko, Y. B. (2018). Porosity of the Marcellus shale: A contrast matching small-angle neutron scattering study. International Journal of Coal Geology, 188, 156–164.

    Article  CAS  Google Scholar 

  • Bal, A., Misra, S., Mukherjee, M., Dutta, T. K., Sen, D., Patra, A., & Raja, E. (2023). Concurrent influence of geological parameters on the integrated nano-pore structure and discretized pore families of the petroliferous Cambay shale assessed through multivariate dependence measure. Frontiers in Earth Science, 11, 1157122.

    Article  ADS  Google Scholar 

  • Bal, A., Misra, S., & Sen, D. (2022). Accessible to total nanopore structure and complexity in Cambay shales, India: An implication on storage and transport of hydrocarbon. In 56th U.S. rock mechanics/geomechanics symposium. https://doi.org/10.56952/ARMA-2022-0653

  • Biswas, S. K. (1992). Tectonic framework and evolution of graben basins of India. Indian Journal of Petroleum Geology, 1, 276–292.

    Google Scholar 

  • Caniego, F. J., Martín, M. A., & San José, F. (2003). Rényi dimensions of soil pore size distribution. Geoderma, 112(3–4), 205–216.

    Article  ADS  Google Scholar 

  • Cao, T. T., Song, Z. G., Wang, S. B., & Xia, J. (2015). A comparative study of the specific surface area and pore structure of different shales and their kerogens. Science China Earth Sciences, 58, 510–522. https://doi.org/10.1007/s11430-014-5021-2

    Article  ADS  CAS  Google Scholar 

  • Chandra, D., Vishal, V., Bahadur, J., Agrawal, A. K., Das, A., Hazra, B., & Sen, D. (2022). Nano-scale physicochemical attributes and their impact on pore heterogeneity in shale. Fuel, 314, 123070.s.

    Article  Google Scholar 

  • Chhabra, A., & Jensen, R. V. (1989). Direct Determination of the f(c) singularity spectrum. Physical Review Letters, 62(12), 1327–1330.

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  • Clarkson, C. R., Solano, N., Bustin, R. M., Bustin, A. M. M., Chalmers, G. R. L., He, L., et al. (2013). Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103, 606–616.

    Article  CAS  Google Scholar 

  • Crick, I. H., Boreham, C. J., Cook, A. C., & Powell, T. G. (1988). Petroleum geology and geochemistry of middle proterozoic McArthur Basin, Northern Australia II: Assessment of source rock potential. AAPG Bulletin, 72(12), 1495–1514.

    CAS  Google Scholar 

  • Dai, X., Wei, C., Wang, M., Shi, X., Wang, X., & Vandeginste, V. (2023). Experimental investigation of storage space and adsorption capacity variation of shale under different reaction times in supercritical CO2. Natural Resources Research, 32(5), 2337–2353.

    Article  CAS  Google Scholar 

  • Feder, J. (1988). Random walks and fractals. In J. Feder (Ed.), Fractals. Physics of Solids and Liquids. Springer. https://doi.org/10.1007/978-1-4899-2124-6_9

  • Gentzis, T. (2013). A review of the thermal maturity and hydrocarbon potential of the Mancos and Lewis shales in parts of New Mexico, USA. International Journal of Coal Geology, 113, 64–75.

    Article  CAS  Google Scholar 

  • Glaser, K. S., Miller, C. K., Johnson, G. M., Toelle, B., Kleinberg, R. B., Miller, P., & Pennington, W. D. (2014). Seeking the sweet spot: Reservoir and completion quality in organic shales. Schlumberger, Oilfiled Review Winter, 25(4), 16–29.

    Google Scholar 

  • Gordon, R. G., DeMets, C., & Argus, D. F. (1990). Kinematic constraints on distributed lithospheric deformation in the equatorial Indian ocean from present motion between the Australian and Indian plates. Tectonics, 9(3), 409–422.

    Article  ADS  Google Scholar 

  • Guo, T., Meng, X., Lei, W., Liu, M., & Huang, L. (2023). Characteristics and governing factors of pore structure and methane sorption in deep-marine shales: a case study of the Wufeng–Longmaxi formations, Weirong shale gas field, Sichuan Basin. Natural Resources Research, 32(4), 1733–1759.

    Article  CAS  Google Scholar 

  • Hazra, B., Wood, D. A., Kumar, S., Saha, S., Dutta, S., Kumari, P., & Singh, A. K. (2018). Fractal disposition, porosity characterization and relationships to thermal maturity for the Lower Permian Raniganj basin shales, India. Journal of Natural Gas Science and Engineering, 59, 452–465.

    Article  CAS  Google Scholar 

  • Hinde, A. L. (2004). PRINSAS - A windows-based computer program for the processing and interpretation of small-angle scattering data tailored to the analysis of sedimentary rocks. Journal of Applied Crystallography, 37(6), 1020–1024.

    Article  ADS  CAS  Google Scholar 

  • Ibad, S. M., & Padmanabhan, E. (2022). Lithofacies, mineralogy, and pore types in Paleozoic gas shales from Western Peninsular Malaysia. Journal of Petroleum Science and Engineering, 212, 110239.

    Article  CAS  Google Scholar 

  • Jarvie, D. M., Claxton, B. L., Henk, F., Breyer, J. T. (2001). Oil and shale gas from the Barnett Shale, Ft. Worth Basin, Texas. In AAPG annual meeting program (Vol. 10).

  • Kuila, U. (2013). Measurement and interpretation of porosity and pore-size distribution in mudrocks: The whole story of Shale. Colorado School of Mines.

    Google Scholar 

  • Lafargue, E., Marquis, F., & Pillot, D. (1998). Rock-eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l'Institut Français du Pétrole, 53(4), 421–437.

    Article  CAS  Google Scholar 

  • Li, G., Xiao, X., Gai, H., Feng, Y., Lu, C., & Meng, G. (2023). Nanopore structure evolution of lower Cambrian shale in the Western Hubei Area, Southern China, and its geological implications based on thermal simulation experimental results. Natural Resources Research, 32(2), 731–754.

    Article  CAS  Google Scholar 

  • Li, Q., Xing, H., Liu, J., & Liu, X. (2015). A review on hydraulic fracturing of unconventional reservoir. Petroleum, 1(1), 8–15.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, C., Tang, D., Gan, Q., Niu, X., Wang, K., & Shen, R. (2017). Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos and Qinshui basins in China. Fuel, 206, 352–363.

    Article  CAS  Google Scholar 

  • Li, Z., Liu, D., Cai, Y., Wang, Y., & Teng, J. (2019). Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel, 257, 116031.

    Article  CAS  Google Scholar 

  • Liu, K., Ostadhassan, M., Sun, L., Zou, J., Yuan, Y., Gentzis, T., et al. (2019). A comprehensive pore structure study of the Bakken shale with SANS, N2 adsorption and mercury intrusion. Fuel, 245, 274–285.

    Article  CAS  Google Scholar 

  • Liu, K., Ostadhassan, M., Zhou, J., Gentzis, T., & Rezaee, R. (2017). Nanoscale pore structure characterization of the Bakken shale in the USA. Fuel, 209, 567–578.

    Article  CAS  Google Scholar 

  • Lowell, S., Shields, J. E., & Thomas, M. A. (2005). Characterization of porous solids and powders: Surface area, pore size, and density. Choice Reviews Online. https://doi.org/10.5860/choice.42-5288

    Article  Google Scholar 

  • Lowell, S., Shields, J. E., Lowell, S., Shields, J. E. (2014). Pore analysis by adsorption. In Powder surface area and porosity (pp. 52–71).

  • Lu, C., Xiao, X., Xue, Z., Chen, Z., Li, G., & Feng, Y. (2023). Fractal and multifractal characteristics of nanopores and their controlling factors in marine-continental transitional shales and their Kerogens from Qinshui Basin, Northern China. Natural Resources Research, 32(5), 2313–2336.

    Article  Google Scholar 

  • Medina-Rodriguez, B. X. (2021). Shale pore architecture Characterization via TD- NMR and gas adsorption. University of Wyoming ProQuest Dissertations Publishing.

  • Memon, A., Li, A., Memon, B. S., Muther, T., Han, W., Kashif, M., et al. (2021). Gas adsorption and controlling factors of shale: Review, application, comparison and challenges. Natural Resources Research, 30(1), 827–848.

    Article  CAS  Google Scholar 

  • Meyer, K., & Klobes, P. (1999). Comparison between different presentations of pore size distribution in porous materials. Fresenius’ Journal of Analytical Chemistry, 363(2), 174–178.

    Article  CAS  Google Scholar 

  • Muller, J. (1996). Characterization of pore space in chalk by multifractal analysis. Journal of Hydrology, 187(1–2), 215–222.

    Article  ADS  Google Scholar 

  • Pandey, R., & Harpalani, S. (2018). An imaging and fractal approach towards understanding reservoir scale changes in coal due to bioconversion. Fuel, 230, 282–297.

    Article  CAS  Google Scholar 

  • Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70(3), 318–329.

    Google Scholar 

  • Peters, K. E., Cassa, M. R. (1994). Applied source rock geochemistry: Chapter 5: Part II. Essential elements. In AAPG special volume (pp. 93–120).

  • Radlinski, A. P. (2006). Small-angle neutron scattering and the microstructure of rocks. Reviews in Mineralogy and Geochemistry, 63, 363–397.

    Article  ADS  CAS  Google Scholar 

  • Radlinski, A. P., Blach, T., Vu, P., Ji, Y., de Campo, L., Gilbert, E. P., et al. (2021). Pore accessibility and trapping of methane in Marcellus shale. International Journal of Coal Geology, 248, 103850.

    Article  CAS  Google Scholar 

  • Rao, G. N. (2001). Sedimentation, stratigraphy, and petroleum potential of Krishna–Godavari basin. East Coast of India. AAPG Bulletin, 85(9), 1623–1643.

    CAS  Google Scholar 

  • Rezaeyan, A., Pipich, V., Busch, A., Maier-Leibnitz Zentrum, H., & Jülich GmbH, F. (2021). MATSAS: A small-angle scattering computing tool for porous systems. Journal of Applied Crystallography, 54, 697–706.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, M., Wen, J., Pan, Z., Liu, B., Blach, T. P., Ji, Y., et al. (2022). Pore accessibility by wettable fluids in overmature marine shales of China: Investigations from contrast-matching small-angle neutron scattering (CM-SANS). International Journal of Coal Geology, 255, 103987.

    Article  CAS  Google Scholar 

  • Sun, M., Yu, B., Hu, Q., Zhang, Y., Li, B., Yang, R., et al. (2017). Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: Investigations using small-angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm. International Journal of Coal Geology, 171, 61–68.

    Article  CAS  Google Scholar 

  • Sun, M., Zhang, L., Hu, Q., Pan, Z., Yu, B., Sun, L., et al. (2019). Pore connectivity and water accessibility in upper Permian transitional shales, southern China. Marine and Petroleum Geology, 107, 407–422.

    Article  ADS  CAS  Google Scholar 

  • Sun, M., Zhao, J., Pan, Z., Hu, Q., Yu, B., Tan, Y., et al. (2020). Pore characterization of shales: A review of small angle scattering technique. Journal of Natural Gas Science and Engineering, 78, 103294.

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069.

    Article  CAS  Google Scholar 

  • Tissot, B. P., du Petrole, E. N. S., & Welte, D. H. (1978). Petroleum formation and occurrence: A new approach to oil and gas exploration (Book in German). Springer. https://doi.org/10.1007/978-3-642-96446-6

    Book  Google Scholar 

  • Vázquez, E. V., Ferreiro, J. P., Miranda, J. G. V., & González, A. P. (2008). Multifractal analysis of pore size distributions as affected by simulated rainfall. Vadose Zone Journal, 7(2), 500–511.

    Article  Google Scholar 

  • Vishal, V., Chandra, D., Bahadur, J., Sen, D., Hazra, B., Mahanta, B., & Mani, D. (2019). Interpreting pore dimensions in gas shales using a combination of SEM imaging, small-angle neutron scattering, and low-pressure gas adsorption. Energy and Fuels, 33(6), 4835–4848.

    Article  CAS  Google Scholar 

  • Wang, F.-Y., Yang, K., & Zai, Y. (2020a). Multifractal characteristics of shale and tight sandstone pore structures with nitrogen adsorption and nuclear magnetic resonance. Petroleum Science, 17, 1209–1220.

    Article  CAS  Google Scholar 

  • Wang, P., Jiang, Z., Ji, W., Zhang, C., Yuan, Y., Chen, L., & Yin, L. (2016). Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan basin, South China: Evidence from SEM digital images and fractal and multifractal geometries. Marine and Petroleum Geology, 72, 122–138.

    Article  ADS  Google Scholar 

  • Wang, X., Zhu, Y., & Wang, Y. (2020b). Fractal characteristics of micro-and mesopores in the Longmaxi shale. Energies, 13, 1349.

    Article  CAS  Google Scholar 

  • Wang, Y., Qin, Y., Zhang, R., He, L., Anovitz, L. M., Bleuel, M., et al. (2018). Evaluation of nanoscale accessible pore structures for improved prediction of gas production potential in Chinese marine shales. Energy and Fuels, 32, 12447–12461.

    Article  CAS  Google Scholar 

  • Wang, Z., Jiang, X., Pan, M., & Shi, Y. (2020c). Nano-scale pore structure and its multifractal characteristics of tight sandstone by N2 adsorption/desorption analyses: A case study of Shihezi formation from the Sulige gas filed, Ordos basin, China. Minerals, 10(4), 377.

    Article  ADS  CAS  Google Scholar 

  • Wu, B., Xie, R., Jin, G., Liu, J., Wang, S., & Fan, W. (2021). Investigation on the pore structure and multifractal characteristics of tight sandstone using nitrogen gas adsorption and mercury injection capillary pressure experiments. Energy and Fuels, 36(1), 262–274.

    Article  Google Scholar 

  • Wu, B., Xie, R., Jin, G., Liu, J., Wang, S., & Fan, W. (2022). Investigation on the pore structure and multifractal characteristics of tight sandstone using nitrogen gas adsorption and mercury injection capillary pressure experiments. Energy and Fuels, 36(1), 262–274.

    Article  CAS  Google Scholar 

  • Yang, R., He, S., Yi, J., & Hu, Q. (2016). Nano-scale pore structure and fractal dimension of organic-rich Wufeng–Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Marine and Petroleum Geology, 70, 27–45.

    Article  ADS  CAS  Google Scholar 

  • Yu, S., Bo, J., Fengli, L., & Jiegang, L. (2017). Structure and fractal characteristic of micro- and meso-pores in low, middle-rank tectonic deformed coals by CO2 and N2 adsorption. Microporous and Mesoporous Materials, 253, 191–202.

    Article  CAS  Google Scholar 

  • Zendehboudi, S., & Bahadori, A. (2017). Shale gas: Introduction, basics, and definitions. Shale Oil and Gas Handbook. https://doi.org/10.1016/B978-0-12-802100-2.00001-0

    Article  Google Scholar 

  • Zhang, J., & Hu, Y. (2020). Comparative evaluation of pore structure heterogeneity in low-permeability tight sandstones using different fractal models based on NMR technology: A case study of Benxi formation in the central Ordos basin. Energy and Fuels, 34, 13924–13942.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhang, X., Chai, H., Li, Y., & Zhou, Y. (2019). Pore structure characterization for a continental lacustrine shale parasequence based on fractal theory. Fractals, 27(1), 1–18.

    Article  Google Scholar 

  • Zhang, S., Liu, H., Wu, C., & Jin, Z. (2022). Influence of particle size on pore structure and multifractal characteristics in coal using low-pressure gas adsorption. Journal of Petroleum Science and Engineering, 212, 110273.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge critical and constructive reviews from four anonymous reviewers and editorial guidance by John Carranza. The ACMS, IIT Kanpur supported the XRD and low-pressure N2 and CO2 adsorption tests. Solid State Physics Division, BARC, provided the SWAXS beamline for pore-analysis. AB acknowledges a senior research fellowship for his doctoral research. This work is supported by a Pan IIT-ONGC research grant awarded to SM and a collaboration with Keshava Deva Malaviya Institute of Petroleum Exploration (KDMIPE), ONGC, Dehradun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Misra.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, A., Misra, S. & Sen, D. Nanopore Heterogeneity and Accessibility in Oil and Gas Bearing Cretaceous KG (Raghampuram) Shale, KG Basin, India: An Advanced Multi-analytical Study. Nat Resour Res (2024). https://doi.org/10.1007/s11053-024-10319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11053-024-10319-3

Keywords

Navigation