Skip to main content

Advertisement

Log in

Deconvolving geochemical micro-spatial variability of an unconsolidated aquifer through chemometric and geostatistical techniques

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Substrate properties are pivotal in shaping porewater chemistry and groundwater quality, serving as the primary driving factors. While spatial analysis of geochemical distribution has been extensively explored in hydrochemistry, the application of geostatistical techniques in tropical island soil investigation remains lacking. In this study, we aim to characterise the geochemical and micro-spatial variability of soil along the flow path of groundwater via integration of chemometric and geostatistical techniques. The study was conducted across a ~ 350 m2 area of unconsolidated soil profile (2.75 m depth × 125 m length) on a sedimentary island’s aquifer. The results revealed that multivariate statistical analysis coupling iso-factor scores maps can provide key insights to constraint the subsurface geochemical behaviour. Marine and lithogeneous (natural-derived) materials were found to significantly influence the metals distribution across the soil profile. Clay and sesquioxides (Al2O3 and Fe2O3) from the high-relief area appear to influence the micro-variability of the inland soil, while seawater mixing impacts the subsoil geochemistry. This study concludes that natural sources, pedogenic processes, and seawater intrusion are the major drivers of metals variability in the tropical island aquifer. These findings provided a scientific overview of metals distribution in a seawater–freshwater mixing zone and significant references for the vertical and horizontal distribution of metals in a sandy soil profile. In particular, the chemometric and geostatistical analysis can be potentially used as robust tools for investigating biogeochemical cycling and the source and sink of groundwater pollutants. It is envisaged that future studies could employ a similar approach to explore other islands worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from: Lin et al. 2013)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available in the supplementary materials or from the corresponding author on reasonable request.

References

  • Abdullah MH, Musta B, Tan MMd (1997) A preliminary geochemical study on Manukan Island, Sabah. Borneo Sci 3:43–51

    Google Scholar 

  • Abdul-Wahab D, Gibrilla A, Adomako D, Adotey DK, Ganyaglo S, Laar C, Zakaria N, Anornu G (2022) Application of geostatistical techniques to assess groundwater quality in the Lower Anayari catchment in Ghana. HydroRes 5:35–47

    Article  Google Scholar 

  • Aishah AW, Zauyah S, Anuar AR, Fauziah CI (2010) Spatial variability of selected chemical characteristics of paddy soils in sawah sempadan, Selangor, Malaysia. Malaysian J Soil Sci 14:27–39

    Google Scholar 

  • Anda M, Purwantari ND, Yulistiani D, Sajimin SE, Husnain AF (2023) Reclamation of post-tin mining areas using forages: a strategy based on soil mineralogy, chemical properties, and particle size of the refused materials. CATENA 213:106140

    Article  Google Scholar 

  • Aris AZ, Abdullah MH, Praveena SM, Yusoff MK, Juahir H (2010) Extenuation of saline solutes in shallow aquifer of a small tropical island: A cases study of Manukan Island, North Borneo. EnvironmentAsia 3:84–92

    Google Scholar 

  • Aris AZ, Praveena SM, Abdullah MH (2012) The influence of seawater on the chemical composition of groundwater in a small island: the example of Manukan Island, East Malaysia. J Coastal Res 28(1):64–75

    Article  CAS  Google Scholar 

  • Atteia O, Dubois JP, Webster R (1994) Geostatistical analysis of soil contamination in the Swiss Jura. Env Pollut 86:315–327

    Article  CAS  Google Scholar 

  • Basir J, Sanudin T, Tating FF (1999) Late Eocene planktonic foraminifera from the Crocker Formation, Pun Batu, Sabah. Warta Geol 14(4):1–15

    Google Scholar 

  • Belkhiri L, Mouni L, Tiri A (2012) Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environ Geochem Health 34(1):1–13. https://doi.org/10.1007/s10653-011-9376-4

    Article  CAS  PubMed  Google Scholar 

  • Bjerg PL, Christensen TH (1992) Spatial and temporal small-scale variation in groundwater quality of a shallow sandy aquifer. J Hydrol 131:133–149

    Article  CAS  Google Scholar 

  • Bourennane H, Salvador-Blanes S, Cornu S, King D (2003) Scale of spatial dependence between chemical properties of topsoil and subsoil over a geologically contrasted area (Massif Central, France). Geoderma 112:235–251

    Article  CAS  Google Scholar 

  • Chappell NA, Bidin K, Tych W (2001) Modelling rainfall and canopy on net-precipitation beneath selectively logged tropical forest. Plant Ecol 153:215–229

    Article  Google Scholar 

  • Chen K, Jiao JJ, Huang J, Huang R (2007) Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environ Pollut 147:771–780. https://doi.org/10.1016/j.envpol.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  • Clark I (1977) Practical Geostatistics. Elsevier Applied Science Publishers Ltd, Essex, UK

  • Diez-Martin M, Cobo-Sanchez L, Baddeley A, Uribelarrea D, Mabulla A, Baquedano E, Dominguez-Rodrigo M (2021) Tracing the spatial imprint of Oldowan technological behaviors: a view from DS (Bed I, Olduvai Gorge, Tanzania). PLoS ONE 16(7):e0254603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobermann A, Goovaerts P, George T (1995) Sources of soil variation in an acid Ultisol of the Philippines. Geoderma 68:173–191

    Article  CAS  Google Scholar 

  • Duan P, Wang W, Sang S, Ma M, Wang J, Zhang W (2019) Modes of occurrence and removal of toxic elements from high-uranium coals of Rongyang Mine by stepped release flotation. Energy Sci Eng 7(5):1678–1686

    Article  CAS  Google Scholar 

  • El-Anwar EAA, Mekky HS, Wahab WA (2018) Geochemistry, mineralogy and depositional environment of black shales of the Duwi Formation, Qusseir area, Red Sea coast, Egypt. Carbonates Evaporites 34:883–892

    Article  Google Scholar 

  • Fang WX, Hu RZ, Wu PW (2002) Influence of black shales on soils and edible plants in the Ankang area, Shaanxi Province, P.R. of China. Environ Geochem Health 24:35–46. https://doi.org/10.1023/A:1013981016542

    Article  CAS  Google Scholar 

  • Farzaneh G, Khorasani N, Ghodousi J, Panahi M (2022) Application of geostatistical models to identify spatial distribution of groundwater quality parameters. Environ Sci Pollut Res 29:36512–36532

    Article  CAS  Google Scholar 

  • Fedo CM, Eriksson KA, Krogstad EJ (1996) Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochim Cosmochim Ac 60(10):1751–1763

    Article  CAS  Google Scholar 

  • Gandolff R (2023) Lead exposure in childhood and historical land use: a geostatistical analysis of soil lead concentrations in South Philadelphia parks. Environ Monit Assess 195:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia Navarro FJ, Amoros Ortiz-Villajos JA, Sanchez Jimenez CJ, Jimenez Ballesta R (2011) Red soil geochemistry in a semiarid Mediterranean environment and its suitability for vineyards. Environ Geochem Health 33:279–289. https://doi.org/10.1007/s10653-010-9340-8

    Article  CAS  PubMed  Google Scholar 

  • Helena B, Pardo B, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816

    Article  CAS  Google Scholar 

  • Herzfeld UC (2004) Atlas of Antarctica – topographic maps from geostatistical analysis of satellite radar altimeter data. Springer, Berlin

    Google Scholar 

  • Hosseinalizadeh M, Ahmadi H, Feiznia S, Rivaz F, Naseri S (2017) Multivariate geostatistical analysis of fallout radionuclides activity measured by in-situ gamma-ray spectrometry: case study: loessial paired sub-catchments in northeast Iran. Quat Int 429(Part B):108–118

    Article  Google Scholar 

  • Hu BF, Ni H, Xie M, Li H, Wen Y, Chen S, Zhou Y, Teng H, Bourennane H, Shi Z (2023) Mapping soil organic matter and identifying potential controls in the farmland of Southern China: integration of multi-source data, machine learning and geostatistics. Land Degrad Dev. https://doi.org/10.1002/ldr.4858

    Article  Google Scholar 

  • Ijaz Z, Zhao C, Ijaz N, Rehman Z, Ijaz A (2023) Development and optimization of geotechnical soil maps using various geostatistical and spatial interpolation techniques: a comprehensive study. Bull Engin Geol Environ 82:215

    Article  Google Scholar 

  • Imrie CE, Korre A, Munoz-Melendez G, Thornton I, Durucan S (2008) Application of factorial kriging analysis to the FOREGS European topsoil geochemistry database. Sci Total Environ 393:96–110. https://doi.org/10.1016/j.scitotenv.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  • Juan P, Mateu J, Jordan MM, Mataix-Solera J, Melendez-Pastor I, Navarro-Pedreno J (2011) Geostatistical methods to identify and map spatial variations of soil salinity. J Geochem Explor 108:62–72. https://doi.org/10.1016/j.gexplo.2010.10.003

    Article  CAS  Google Scholar 

  • Khan J, Singh R, Upreti P, Yadav RK (2022) Geo-statistical assessment of soil quality and identification using integrated GIS and multivariate statistical analysis in industrial region of Western India. Environ Technol Innov 28:102646

    Article  CAS  Google Scholar 

  • Lambrakis N, Antonakos A, Panagopoulos G (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res 38:1862–1872. https://doi.org/10.1016/j.watres.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Abdullah MH, Musta B, Praveena SM, Aris AZ (2011) Stability behavior and thermodynamic states of iron and manganese in sandy soil aquifer, Manukan Island, Malaysia. Nat Resour Res 20(1):45–56. https://doi.org/10.1007/s11053-011-9136-2

    Article  CAS  Google Scholar 

  • Lin CY, Abdullah MH, Praveena SM, Yahaya AH, Musta B (2012) Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. J Hydrol 432–433:26–42. https://doi.org/10.1016/j.jhydrol.2012.02.015

    Article  CAS  Google Scholar 

  • Lin CY, Musta B, Abdullah MH (2013) Geochemical processes, evidence, and thermodynamic behavior of dissolved and precipitated carbonate minerals in a modern seawater/freshwater mixing zone of a small tropical island. Appl Geochem 29:13–31. https://doi.org/10.1016/j.apgeo.2012.10.029

    Article  CAS  Google Scholar 

  • Linnik VG, Bauer TV, Minkina TM, Mandzhieva SS, Mazarji M (2022) Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environ Geochem Health 44:319–333

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang X, Dai S, Zhou J, Liu D, Hu Q, Wang W, Xie M, Lu Y, Tian M, Yan H (2023) Spatial variations, health risk assessment, and source apportionment of soil heavy metals in the middle Yellow River Basin of northern China. J Geochem Explor 252:107275

    Article  CAS  Google Scholar 

  • Loska K, Wiechula D (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51:723–733. https://doi.org/10.1016/S0045-6535(03)00187-5

    Article  CAS  PubMed  Google Scholar 

  • Marques JJ, Schulze DG, Curi N, Mertzman SA (2004) Trace element geochemistry in Brazilian Cerrado soils. Geoderma 121:31–43. https://doi.org/10.1016/j.geoderma.2003.10.003

    Article  CAS  Google Scholar 

  • Maydagan L, Franchini M, Impiccini A, Lentz D, Patrier P, Beaufort D (2018) Chlorite, white mica and clay minerals as proximity indicators to ore in the shallow porphyry. Ore Geol Rev 92:297–317

    Article  Google Scholar 

  • Meirvenne V (2003) Is the soil variability within the small fields of flanders structured enough to allow precision agriculture? Precis Agri 4:193–201. https://doi.org/10.1023/A:1024561406780

    Article  Google Scholar 

  • Mostert M, Ayoko G, Kokot S (2010) Application of chemometrics to analysis of soil pollutants. Trends Anal Chem 29(5):430–445

    Article  CAS  Google Scholar 

  • Mousavi A, Karimi A, Maleki S, Safari T, Taghizadeh-Mehrjardi R (2023) Digital mapping of selected soil properties using machine learning and geostatistical techniques in Mashhad plain, northeastern Iran. Environ Earth Sci 82:234

    Article  Google Scholar 

  • Palumbo B, Angelone M, Bellanca A, Dazzi C, Hauser S, Neri R, Wilson J (2000) Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma 95:247–266

    Article  CAS  Google Scholar 

  • Panagiotou CF, Kyriakidis P, Tziritis E (2022) Application of geostatistical methods to groundwater salinization problems: a review. J Hydrol 615:128566

    Article  Google Scholar 

  • Patriche CV, Rosca B, Pirnau RG, Vasiliniuc I (2023) Spatial modelling of topsoil properties in Romania using geostatistical methods and machine learning. PLoS ONE 18(8):e0289286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praveena SM, Abdullah MH, Aris AZ (2010a) Modeling for equitable groundwater management. Int J Environ Res 4(3):415–426

    Google Scholar 

  • Praveena SM, Lin CY, Aris AZ, Abdullah MH (2010b) Groundwater assessment at Manukan Island, Sabah: multidisciplinary approaches. Nat Resour Res 19(4):279–291. https://doi.org/10.1007/s11053-010-9124-y

    Article  CAS  Google Scholar 

  • Praveena SM, Abdullah MH, Aris AZ, Lin CY, Bidin K (2011) Numerical modelling of seawater intrusion in Manukan Island’s aquifer. World Appl Sci J 14:1–7

    Google Scholar 

  • Prohic E, Hausberger G, Davis JC (1997) Geochemical patterns in soils of the karst region, Croatia. J Geochem Explor 60:139–155

    Article  CAS  Google Scholar 

  • Qu L, Lu H, Tian Z, Schoorl JM, Huang B, Liang Y, Qiu D, Liang Y (2024) Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas. CATENA 234:107572

    Article  Google Scholar 

  • Rodrigues WF, de Oliverira FS, Reynaud Schaefer CEG, Gauzzi T, Leite MGP (2021) Geochemistry of Antarctic periglacial soils from Harmony Point, Nelson Island. Environ Earth Sci 80:430

    Article  CAS  Google Scholar 

  • Rodriguez V, Moskwa L-M, Oses R, Kuhn P, Riveras-Munoz N, Seguel O, Scholten T, Wagner D (2022) Impact of climate and slope aspects on the composition of soil bacterial communities involved in pedogenetic processes along the Chilean Coastal Cordillera. Microorganisms 10(5):847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha A, Gupta BS, Patidar S, Martinez-Villegas N (2023) Optimal GIS interpolation techniques and multivariate statistical approach to study the soil-trace metal(loid)s distribution patterns in the agricultural surface soil of Matehuala, Mexico. J Hazard Mat Adv 9:100243

    CAS  Google Scholar 

  • Salem IB, Nazzal Y, Howari FM, Sharma M, Mogaraju JK, Xavier CM (2022) Geospatial assessment of groundwater quality with the distinctive portrayal of heavy metals in the United Arab Amirates. Water 14:879

    Article  CAS  Google Scholar 

  • Shi T, He L, Wang R, Li Z, Hu Z, Wu G (2023) Digital mapping of heavy metals in urban soils: a review and research challenges. CATENA 228:107183

    Article  CAS  Google Scholar 

  • Shomar B, Sankaran R, Solano JR (2023) Mapping of trace elements in topsoil of arid areas and assessment of ecological and human health risks in Qatar. Environ Res 225:115456

    Article  CAS  PubMed  Google Scholar 

  • Sun D-L, Yao B-M, Yang G, Sun G-X (2023) Climate and soil properties regulate the vertical heterogeneity of minor and trace elements in the alpine topsoil of the Hengduan Mountains. Sci Total Environ 899:165653

    Article  CAS  PubMed  Google Scholar 

  • Szefer P, Glasby GP, Pempkowiak J, Kaliszan R (1995) Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chem Geol 120:111–126

    Article  CAS  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) A Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  CAS  Google Scholar 

  • Tume P, Gonzalez E, Reyes F, Fuentes JP, Roca N, Bech J, Medina G (2019) Source analysis and health risk assessment of trace elements in urban soils of Hualpen, Chile. CATENA 175:304–316

    Article  CAS  Google Scholar 

  • Turniski R, Zupancic N, Grcman H (2023) Geochemical evidence of illuvial processes in clay-rich soils on limestones in a humid temperate climate. Geoderma 429:116266

    Article  CAS  Google Scholar 

  • Tuttle MLW, Breit GN, Goldhaber MB (2009) Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements. Appl Geochem 24:1565–1578

    Article  CAS  Google Scholar 

  • Van der Westhuize S, Heuvelink GBM, Hofmeyr DP (2023) Multivariate random forest for digital soil mapping. Geoderma 431:116365

    Article  Google Scholar 

  • Wang Z, Darilek JL, Zhao Y, Huang B, Sun W (2011) Defining soil geochemical baselines at small scales using geochemical common factors and soil organic matter as normalisers. J Soils Sediments 11:3–14. https://doi.org/10.1007/s11368-010-0269-4

    Article  CAS  Google Scholar 

  • Wilson B, Lang B, Pyatt FB (2005) The dispersion of heavy metals in the vicinity of Britannia Mine, British Columbia, Canada. Ecotoxicol Environ Saf 60:269–276

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Pangara C, Aung AM, Yu S, Tabucanon AS, Hong B, Kurniawan TA (2022) Spatial changes of nutrients and metallic contaminants in topsoil with multi-geostatistical approaches in a large-size watershed. Sci Total Environ 824:153888

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Peng B, Peltola P, Tang X, Xie S (2011) Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P. R. China. Environ Geochem Health 34(3):375–390. https://doi.org/10.1007/s10653-011-9398-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the Universiti Malaya, Faculty of Science—Grant Penyelidikan Fakulti (GPF087A-2020) awarded to Chin Yik Lin and Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP) program (Vot. No. 63933 & Vot. No. 56051, UMT/CRIM/2-2/5 Jilid 2 (10)) for supporting Prof Lam to conduct this joint project.

Funding

Universiti Malaya, Faculty of Science—Grant Penyelidikan Fakulti (GPF087A-2020), GPF087A-2020, Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP) program, Vot. No. 63933 & Vot. No. 56051, UMT/CRIM/2-2/5 Jilid 2 (10).

Author information

Authors and Affiliations

Authors

Contributions

C.Y.L. did the analysis and wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chin Yik Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 386 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C.Y., Lam, S.S., Hasnan, H.K. et al. Deconvolving geochemical micro-spatial variability of an unconsolidated aquifer through chemometric and geostatistical techniques. Environ Earth Sci 83, 177 (2024). https://doi.org/10.1007/s12665-024-11468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11468-7

Keywords

Navigation