Skip to main content

Advertisement

Log in

Targeted Metagenomics Identification of Microbiome in Preschools exposed to air Pollutants and Their Association with Respiratory Health symptom, Allergy and Eczema

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Microorganisms are an important aspect of the environment which have significant effects on human health. Children are more vulnerable to the effects of microbial pollutants, pathogens and allergens. Microbial components of indoor air cannot be overemphasized due to its vastness and ubiquitous nature. This is a cross sectional comparative study which analysed microbiome in 10 preschools according to their level of exposure to outdoor air pollutant sources using amplicon sequencing technique. A total of 20 dust samples were collected from indoor and outdoor environment and analysed for the presence of bacteria and fungi. A detailed questionnaire was used to assess the respiratory health status of the respondents. Indoor air quality was assessed by measuring the level of particulate matter (PM2.5 and PM10), temperature, relative humidity, air velocity, and CO2. Exposed area recorded higher level of PM10 and CO2 (p <0.05) while temperature, relative humidity and air velocity were higher in the comparative area (p <0.05). Health symptoms were significantly higher in exposed area for cough, eczema and allergy symptoms (p <0.05). Predominant bacteria species includes Acinetobacter_radioresistens, Acinetobacter_seifertii, Lactobaccillus_iners, Pseudomonas_B_luteola, and Franconibacter_pulveris while predominant fungi species includes Rhodosporidioboluc_fluvialis, Rhodotorula_kratochvilovae, Aspergillus_penicilloides, Aspergillus_gracilis, Curvularia_sorghina, Eupenidiella_venezuelensis, Rhodosporidiobolus_ruineniae, Bipolaris_papendorfii and Curvularia_lunata. Cough symptom was strongly associated with PM10 (AOR =1.27), carpeting (AOR =1.62), Cladosporium dominicanum (AOR =2.12) and Aureobasidium gracilis (AOR =2.04). Eczema was strongly associated with keeping furry pet (AOR =5.46) and Rhodotorula_toruloides (1.02). Allergy was strongly associated with PM10 (AOR =3.23), Megasporoporia_bannaensis (AOR =1.43) and Malassezia_restricta (AOR =2.10). Preschools located close to outdoor air pollutants were more exposed to pollutants and microbiome from indoor and outdoor sources. Health symptoms were significantly associated with air pollutants, therefore proper measures should be implemented to mitigate the exposure to microbiome, infiltration of outdoor air pollutants and health effects on children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are not publicly available due to ethical reasons but are available from the corresponding author on reasonable request.

References

  • Al-Hemoud A, Al-Awadi L, Al-Khayat A, Behbehani W (2018) Streamlining IAQ guidelines and investigating the effect of door opening/closing on concentrations of VOCs, formaldehyde, and NO2 in office buildings. Build Environ 137:127–137

    Article  Google Scholar 

  • Asrul S, Juliana J (2017) Indoor air quality and its association with respiratory health among preschool children in urban and suburban area. Malays J Public Health 78–88

  • Awad AH, Saeed Y, Hassan Y, Fawzy Y, Osman M (2018) Air microbial quality in certain public buildings, Egypt: a comparative study. Atmos Pollut Res 9(4):617–626

    Article  Google Scholar 

  • Baccouche BM, Sevostianov VI (2020) Mechanisms of VOC pollution-induced respiratory dysfunction: a review. New Mexico J Sci 54(1)

  • Baeza M, Barahona S, Alcaíno J, Cifuentes V (2017) Amplicon-metagenomic analysis of fungi from Antarctic terrestrial habitats. Front Microbiol 8:2235

    Article  PubMed  PubMed Central  Google Scholar 

  • Bensch K, Groenewald JZ, Meijer M, Dijksterhuis J, Jurjević Ž, Andersen B, Houbraken J, Crous PW, Samson RA (2018) Cladosporium species in indoor environments. Stud Mycol 89:177–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibby K, Viau E, Peccia J (2011) Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett Appl Microbiol 52(4):386–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1):1–7

    Article  Google Scholar 

  • Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol 79(8):2519–2526

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chegini FM, Baghani AN, Hassanvand MS, Sorooshian A, Golbaz S, Bakhtiari R, Ashouri A, Joubani MN, Alimohammadi M (2020) Indoor and outdoor airborne bacterial and fungal air quality in kindergartens: seasonal distribution, genera, levels, and factors influencing their concentration. Build Environ 175:106690

    Article  Google Scholar 

  • Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y (2018) Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7):1242–1264

    Article  CAS  Google Scholar 

  • Chithra VS, Nagendra SS (2018) A review of scientific evidence on indoor air of school building: pollutants, sources, health effects and management. Asian J Atmos Environ 12(2):87–108

    Article  CAS  Google Scholar 

  • Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15(3):799–821

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Indugula R, Vesper S, Zhu Z, Jandarov R, Reponen T (2017) Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR. Environ Sci Process Impacts 19(10):1312–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannemiller KC, Gent JF, Leaderer BP, Peccia J (2016) Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air 26(2):179–192

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Lau J, Wang Z, Wargocki P (2023) Associations between illness-related absences and ventilation and indoor PM2. 5 in elementary schools of the Midwestern United States. Environ Int 176:107944

    Article  CAS  PubMed  Google Scholar 

  • Deng T, Shen X, Cheng X, Liu J (2021) Investigation of window-opening behaviour and indoor air quality in dwellings situated in the temperate zone in China. Indoor Built Environ 30(7):938–956

    Article  CAS  Google Scholar 

  • Donovan PD, Gonzalez G, Higgins DG, Butler G, Ito K (2018) Identification of fungi in shotgun metagenomics datasets. PLoS One 13(2):e0192898

    Article  PubMed  PubMed Central  Google Scholar 

  • Du P, Du R, Ren W, Lu Z, Fu P (2018) Seasonal variation characteristic of inhalable microbial communities in PM2. 5 in Beijing city, China. Sci Total Environ 610:308–315

    Article  ADS  PubMed  Google Scholar 

  • Estensmo EL, Maurice S, Morgado L, Martin-Sanchez PM, Skrede I, Kauserud H (2021) The influence of intraspecific sequence variation during DNA metabarcoding: a case study of eleven fungal species. Mol Ecol Resour 21(4):1141–1148

    Article  PubMed  Google Scholar 

  • Fu X, Norbäck D, Yuan Q, Li Y, Zhu X, Hashim JH, Hashim Z, Ali F, Zheng YW, Lai XX, Spangfort MD (2020) Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia. Environ Int 138:105664

    Article  PubMed  Google Scholar 

  • Fu X, Ou Z, Zhang M, Meng Y, Li Y, Chen Q et al (2021) Classroom microbiome, functional pathways and sick-building syndrome (SBS) in urban and rural schools-potential roles of indoor microbial amino acids and vitamin metabolites. Sci Total Environ 795:148879

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gangneux JP, Sassi M, Lemire P, Le Cann P (2020) Metagenomic characterization of indoor dust bacterial and fungal microbiota in homes of asthma and non-asthma patients using next generation sequencing. Front Microbiol 11:1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert JA, Stephens B (2018) Microbiology of the built environment. Nat Rev Microbiol 16(11):661–670

    Article  CAS  PubMed  Google Scholar 

  • Glenn TC, Pierson TW, Bayona-Vásquez NJ, Kieran TJ, Hoffberg SL, Thomas Iv JC, Faircloth BC (2019) Adapterama II: universal amplicon sequencing on Illumina platforms (TaggiMatrix). PeerJ 7:e7786

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo K, Qian H, Zhao D, Ye J, Zhang Y, Kan H, Zhao Z, Deng F, Huang C, Zhao B, Zeng X (2020) Indoor exposure levels of bacteria and fungi in residences, schools, and offices in China: a systematic review. Indoor Air 30(6):1147–1165

    Article  CAS  PubMed  Google Scholar 

  • Heebøll A, Wargocki P, Toftum J (2018) Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624. Sci Technol Built Environ 24(6):626–637

    Article  Google Scholar 

  • Hisamuddin NH, Jalaludin J, Yusof AN, Tualeka AR (2020) Genotoxic effects of exposure to urban traffic related air pollutants on children in Klang Valley, Malaysia. Aerosol Air Qual Res 20(12):2614–2623

    Article  CAS  Google Scholar 

  • Hoseinzadeh E, Taha P, Sepahvand A, Sousa S (2017) Indoor air fungus bioaerosols and comfort index in day care child centers. Toxin Rev 36(2):125–131

    Article  Google Scholar 

  • Hospodsky D, Yamamoto N, Nazaroff WW, Miller D, Gorthala S, Peccia J (2015) Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children's classrooms. Indoor Air 25(6):641–652

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Wang X, Liu W, Cai J, Shen L, Zou Z et al (2016) Household indoor air quality and its associations with childhood asthma in Shanghai, China: on-site inspected methods and preliminary results. Environ Res 151:154–167

    Article  CAS  PubMed  Google Scholar 

  • Hussin NH, Sann LM, Shamsudin MN, Hashim Z (2011) Characterization of bacteria and fungi bioaerosol in the indoor air of selected primary schools in Malaysia. Indoor Built Environ 20(6):607–617

    Article  Google Scholar 

  • Hyytiäinen H, Kirjavainen PV, Täubel M, Tuoresmäki P, Casas L, Heinrich J et al (2021) Microbial diversity in homes and the risk of allergic rhinitis and inhalant atopy in two European birth cohorts. Environ Res 196:110835

    Article  PubMed  Google Scholar 

  • Hyytiäinen HK, Jayaprakash B, Kirjavainen PV, Saari SE, Holopainen R, Keskinen J, Hämeri K, Hyvärinen A, Boor BE, Täubel M (2018) Crawling-induced floor dust resuspension affects the microbiota of the infant breathing zone. Microbiome 6(1):1–2

    Article  Google Scholar 

  • Isa KN, Jalaludin J, Elias SM, Than LT, Jabbar MA, Saudi AS, Norbäck D, Hashim JH, Hashim Z (2021) Metagenomic characterization of indoor dust fungal associated with allergy and lung inflammation among school children. Ecotoxicol Environ Saf 221:112430

    Article  CAS  PubMed  Google Scholar 

  • Ismail IN, Jalaludin J, Bakar SA, Hisamuddin NH, Suhaimi NF (2019) Association of Traffic-Related air Pollution (TRAP) with DNA damage and respiratory health symptoms among primary school children in Selangor. Asian J Atmos Environ (AJAE) 13(2)

  • Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L et al (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10(1):5029

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Karvonen AM, Kirjavainen PV, Täubel M, Jayaprakash B, Adams RI, Sordillo JE et al (2019) Indoor bacterial microbiota and development of asthma by 10.5 years of age. J Allergy Clin Immunol 144(5):1402–1410

    Article  CAS  PubMed  Google Scholar 

  • Kirjavainen PV, Karvonen AM, Adams RI, Täubel M, Roponen M, Tuoresmäki P et al (2019) Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat Med 25(7):1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Korten I, Ramsey K, Latzin P (2017) Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev 21:38–46

    PubMed  Google Scholar 

  • Lai PS, Kolde R, Franzosa EA, Gaffin JM, Baxi SN, Sheehan WJ, Gold DR, Gevers D, Xavier RJ, Phipatanakul W (2018) The classroom microbiome and asthma morbidity in children attending 3 inner-city schools. J Allergy Clin Immunol 141(6):2311–2313

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei J, Liu C, Meng X, Sun Y, Huang S, Zhu Y et al (2024) Associations between fine particulate air pollution with small-airway inflammation: a nationwide analysis in 122 Chinese cities. Environ Pollut 344:123330

    Article  CAS  PubMed  Google Scholar 

  • Madureira J, Paciência I, Pereira C, Teixeira JP, Fernandes ED (2016) Indoor air quality in Portuguese schools: levels and sources of pollutants. Indoor Air 26(4):526–537

    Article  CAS  PubMed  Google Scholar 

  • Mazaheri M, Reche C, Rivas I, Crilley LR, Álvarez-Pedrerol M, Viana M, Morawska L (2016) Variability in exposure to ambient ultrafine particles in urban schools: comparative assessment between Australia and Spain. Environ Int 88:142–149

    Article  CAS  PubMed  Google Scholar 

  • Mbareche H, Veillette M, Bilodeau G, Duchaine C (2020) Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 8:e8523

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendoza DL, Benney TM, Boll S (2021) Long-term analysis of the relationships between indoor and outdoor fine particulate pollution: a case study using research grade sensors. Sci Total Environ 776:145778

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Pizza DM, Villada-Canela M, Reyna MA, Texcalac-Sangrador JL, Serrano-Lomelin J, Osornio-Vargas Á (2020) Assessing the influence of socioeconomic status and air pollution levels on the public perception of local air quality in a Mexico-US Border City. Int J Environ Res Public Health 17(13):4616

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K, Gallo RL (2013) The microbiome extends to subepidermal compartments of normal skin. Nat Commun 4(1):1431

    Article  ADS  PubMed  Google Scholar 

  • Nilsson RH, Larsson KH, Taylor AF, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47(D1):D259–D264

    Article  CAS  PubMed  Google Scholar 

  • Noor Hisyam NH, Juliana J (2014) Association between indoor PM10, PM2.5 and NO2 with airway inflammation among preschool children at industrial and sub-urban areas. Adv Environ Biol 8(15):149–159

    Google Scholar 

  • Norbäck D, Hashim JH, Cai GH, Hashim Z, Ali F, Bloom E, Larsson L (2016a) Rhinitis, ocular, throat and dermal symptoms, headache and tiredness among students in schools from Johor Bahru, Malaysia: associations with fungal DNA and mycotoxins in classroom dust. PLoS One 11(2):e0147996

    Article  PubMed  PubMed Central  Google Scholar 

  • Norbäck D, Hashim JH, Hashim Z, Ali F (2017) Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci Total Environ 592:153–160

    Article  ADS  PubMed  Google Scholar 

  • Norbäck D, Hashim JH, Markowicz P, Cai GH, Hashim Z, Ali F, Larsson L (2016b) Endotoxin, ergosterol, muramic acid and fungal DNA in dust from schools in Johor Bahru, Malaysia—associations with rhinitis and sick building syndrome (SBS) in junior high school students. Sci Total Environ 545:95–103

    Article  ADS  PubMed  Google Scholar 

  • Norbäck D, Lu C, Zhang Y, Li B, Zhao Z, Huang C, Zhang X, Qian H, Sun Y, Wang J, Liu W (2019) Sources of indoor particulate matter (PM) and outdoor air pollution in China in relation to asthma, wheeze, rhinitis and eczema among pre-school children: synergistic effects between antibiotics use and PM10 and second hand smoke. Environ Int 125:252–260

    Article  PubMed  Google Scholar 

  • Norbäck D, Markowicz P, Cai GH, Hashim Z, Ali F, Zheng YW, Lai XX, Spangfort MD, Larsson L, Hashim JH (2014) Endotoxin, ergosterol, fungal DNA and allergens in dust from schools in Johor Bahru, Malaysia-associations with asthma and respiratory infections in pupils. PLoS One 9(2):e88303

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Nygaard AB, Charnock C (2018) Longitudinal development of the dust microbiome in a newly opened Norwegian kindergarten. Microbiome 6:1–1

    Article  Google Scholar 

  • Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomics visualization in a web browser. BMC Bioinform 12(1):1

    Article  Google Scholar 

  • Onwusereaka CO, Jalaludin J, Hisamuddin NH (2022) Indoor air quality and respiratory health implication among Malay preschool children in Puchong and Hulu Langat Selangor, Malaysia. Malays J Med Health Sci 18

  • Park JH, Lemons AR, Roseman J, Green BJ, Cox-Ganser JM (2021) Bacterial community assemblages in classroom floor dust of 50 public schools in a large city: characterization using 16S rRNA sequences and associations with environmental factors. Microbiome 9:1–4

    Google Scholar 

  • Peng Z, Deng W, Tenorio R (2017) Investigation of indoor air quality and the identification of influential factors at primary schools in the North of China. Sustainability 9(7):1180

    Article  Google Scholar 

  • Rahman MA, Ling SF, Awang M, Musa MK, Hamidon N, Syazwan MS, Yusop F, Khamidun MH, Ahmad F (2020) Evaluation of environmental performance in academic building by indoor environmental quality (IEQ). J Crit Rev 7(8):1309–1319

    Google Scholar 

  • Reddy MK, Srinivas T (2017) Mold allergens in indoor play school environment. Energy Procedia 109:27–33

    Article  Google Scholar 

  • Roda C, Barral S, Ravelomanantsoa H, Dusséaux M, Tribout M, Le Moullec Y, Momas I (2011) Assessment of indoor environment in Paris child day care centers. Environ Res 111(8):1010–1017

    Article  CAS  PubMed  Google Scholar 

  • Salonen H, Duchaine C, Mazaheri M, Clifford S, Lappalainen S, Reijula K, Morawska L (2015) Airborne viable fungi in school environments in different climatic regions–a review. Atmos Environ 104:186–194

    Article  ADS  CAS  Google Scholar 

  • Sarijuddin FA, Saudi AS, Kamarudin MK, Isa KN, Mahmud M, Azid A, Balakrishnan A, Abu IF, Amin NA, Rizman ZI (2017) Assessment on level of indoor air quality at kindergartens in Ampang Jaya, Selangor, Malaysia. J Fund Appl Sci 9(4S):801–811

    Article  CAS  Google Scholar 

  • Shahidah N, Shukri M (2017) Indoor airborne bacteria and fungi at different background area in nurseries and day care centres environments. J Clean Was 1(1):35–38

    Article  Google Scholar 

  • Sharpe RA, Thornton CR, Tyrrell J, Nikolaou V, Osborne NJ (2015) Variable risk of atopic disease due to indoor fungal exposure in NHANES 2005–2006. Clin Exp Allergy 45(10):1566–1578

    Article  CAS  PubMed  Google Scholar 

  • Shin SK, Kim J, Ha SM, Oh HS, Chun J, Sohn J, Yi H (2015) Metagenomic insights into the bioaerosols in the indoor and outdoor environments of childcare facilities. PLoS One 10(5):e0126960

    Article  PubMed  PubMed Central  Google Scholar 

  • Siwarom S, Puranitee P, Plitponkarnpim A, Manuyakorn W, Sinitkul R, Vallipakorn SA (2017) Association of indoor air quality and preschool children's respiratory symptoms. Asian Pac J Allergy Immunol 35(3):119–126

    PubMed  Google Scholar 

  • Stabile A, Orczyk C, Hosking-Jervis F, Giganti F, Arya M, Hindley RG, Dickinson L, Allen C, Punwani S, Jameson C, Freeman A (2019) Medium-term oncological outcomes in a large cohort of men treated with either focal or hemi-ablation using high-intensity focused ultrasonography for primary localized prostate cancer. BJU Int 124(3):431–440

    Article  PubMed  Google Scholar 

  • Suhaimi NF, Jalaludin J, Bakar SA (2017) Cysteinyl leukotrienes as biomarkers of effect in linking exposure to air pollutants and respiratory inflammation among school children. Ann Trop Med Public Health 10(2):423–431

    Article  Google Scholar 

  • Suhaimi NF, Jalaludin J, Latif MT (2020) Demystifying a possible relationship between COVID-19, air quality and meteorological factors: evidence from Kuala Lumpur, Malaysia. Aerosol Air Qual Res 20(7):1520–1529

    Article  CAS  Google Scholar 

  • Suhaimi NF, Jalaludin J, Mohd Juhari MA (2022) The impact of traffic-related air pollution on lung function status and respiratory symptoms among children in Klang Valley, Malaysia. Int J Environ Health Res 32(3):535–546

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Meng Y, Ou Z, Li Y, Zhang M, Chen Y, Zhang Z, Chen X, Mu P, Norbäck D, Zhao Z (2022) Indoor microbiome, air pollutants and asthma, rhinitis and eczema in preschool children–a repeated cross-sectional study. Environ Int 161:107137

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Tang H, Du S, Chen Y, Ou Z, Zhang M et al (2023) Indoor metabolites and chemicals outperform microbiome in classifying childhood asthma and allergic rhinitis. Eco-Environ Health 2(4):208–218

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Zee SC, Strak M, Dijkema MB, Brunekreef B, Janssen NA (2017) The impact of particle filtration on indoor air quality in a classroom near a highway. Indoor Air 27(2):291–302

    Article  PubMed  Google Scholar 

  • Wargocki P (2021) What we know and should know about ventilation. REHVA J 58(2):5–13

  • Wargocki P (2022) Effects of classroom air quality on learning in schools. In: Handbook of Indoor Air Quality. Singapore, Springer Nature Singapore, pp 1447–1459

    Chapter  Google Scholar 

  • Weikl F, Tischer C, Probst AJ, Heinrich J, Markevych I, Jochner S, Pritsch K (2016) Fungal and bacterial communities in indoor dust follow different environmental determinants. PLoS One 11(4):e0154131

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto N, Hospodsky D, Dannemiller KC, Nazaroff WW, Peccia J (2015) Indoor emissions as a primary source of airborne allergenic fungal particles in classrooms. Environ Sci Technol 49(8):5098–5106

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yan D, Zhang T, Su J, Zhao LL, Wang H, Fang XM, Zhang YQ, Liu HY, Yu LY (2016) Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Front Microbiol 7:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhou R, Chen B, Zhang T, Hu L, Zou S (2018) Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach. Chemosphere 213:463–471

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yassin MF, Pillai AM (2019) Monitoring of volatile organic compounds in different schools: a determinant of the indoor air quality. Int J Environ Sci Technol 16:2733–2744

    Article  CAS  Google Scholar 

  • Zainudin MA, Jalaludin J, Sopian NA (2019) Indoor air quality (IAQ) in preschools and its association with respiratory inflammation among pre-schoolers. Malays J Med Health Sci 15(4):12–18

  • Zeng XW, Vivian E, Mohammed KA, Jakhar S, Vaughn M, Huang J et al (2016) Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: the seven northeastern cities (SNEC) study. Atmos Environ 138:144–151

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the preschool teachers, parents and their children for their support and participation in making this study a success.

Funding

This research was funded by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (FRGS) project (Project Code:FRGS/1/2023/SKK06/UPM/01/1).

Author information

Authors and Affiliations

Authors

Contributions

Cynthia Oluchi: Conceptualization, Methodology, Validation, formal analysis, resources, writing-original draft and visualization. Funding acquisition. Juliana Jalaludin: Conceptualization, Methodology, supervision, project administration, funding acquisition. Khairul Nizam Mohd Isa: Methodology, formal analysis. Syafinaz Binti Amin Nordin: Supervision, project administration. Suhaili Abubakar: Supervision, project administration. Veronica Chua Poo Choo: Project administration.

Corresponding author

Correspondence to Juliana Jalaludin.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Approval to conduct this study was obtained from Universiti Putra Malaysia Ethics Committee for Research Involving Human Subjects (JKEUPM-2020-497).

Consent to participate

Informed consent was obtained from all subjects involved in the study. Permission was obtained from parents/guardian of the respondents who participated in this study.

Competing Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Microbial components of an indoor environment is one of the main components of human exposure which affects the health and wellbeing of occupants

• The use of the metagenomics method can provide a comprehensive assessment of microbiome in an indoor environment.

• Preschool indoor air quality were influenced by air pollutants and microbiome from indoor and outdoor sources.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onwusereaka, C.O., Jalaludin, J., Isa, K.N.M. et al. Targeted Metagenomics Identification of Microbiome in Preschools exposed to air Pollutants and Their Association with Respiratory Health symptom, Allergy and Eczema. Air Qual Atmos Health (2024). https://doi.org/10.1007/s11869-024-01545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11869-024-01545-y

Keywords

Navigation