Skip to main content
Log in

Abstract

In this paper, by using the monotone form of L’Hospital’s rule and a criterion for the monotonicity of quotient of two power series we present some sharp bounds for a generalized logarithmic mean and Heinz mean by weighted means of harmonic mean, geometric mean, arithmetic mean, two power means \(M_{1/2}(a,b)\) and \(M_{2}(a,b)\). Operator versions of these inequalities are obtained except for those related to the quadratic mean \( M_{2}(a,b)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzer, H., Qiu, S.-L.: Inequalities for means in two variables. Arch. Math. 80, 201–215 (2003)

    MathSciNet  Google Scholar 

  2. Ostle, B., Terwilliger, H.L.: A comparision of two means. Proc. Montana Acad. Sci. 17, 67–70 (1957)

    Google Scholar 

  3. Carlson, B.C.: The logarithmic mean. Am. Math. Mon. 79, 615–618 (1972)

    MathSciNet  Google Scholar 

  4. Zhu, L.: From chains for mean value inequalities to Mitrinovic’s problem II. Int. J. Educ. Sci. Technol. 36, 118–125 (2005)

    Google Scholar 

  5. Leach, E.B., Sholander, M.C.: Extended mean values II. J. Math. Anal. Appl. 92, 207–223 (1983)

    MathSciNet  Google Scholar 

  6. Alzer, H.: Ungleichungen fur Mittelwerte. Arch. Math. 47, 422–426 (1986)

    MathSciNet  Google Scholar 

  7. Stolarsky, K.B.: The power mean and generalized logarithmic means. Am. Math. Mon. 87, 545–548 (1980)

    MathSciNet  Google Scholar 

  8. Pales, Z.S.: Inequalities for differences of power. J. Math. Anal. Appl. 131, 271–281 (1983)

    MathSciNet  Google Scholar 

  9. Lin, T.P.: The power mean and logarithmic mean. Am. Math. Mon 131, 879–883 (1974)

    MathSciNet  Google Scholar 

  10. Szekeley, G.: A classification of means. Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 18, 129–133 (1975)

    MathSciNet  Google Scholar 

  11. Bhatia, R., Davis, C.: More matrix forms of the arithmetic-geometric mean inequality. SIAM J. Matrix Anal. Appl. 14, 132–136 (1993)

    MathSciNet  Google Scholar 

  12. Pecaric, J., Furuta, T., Hot, J.M., Seo, Y.: Mond–Pecaric Method in Operator Inequalities. Element Zagreb, Zagreb (2005)

    Google Scholar 

  13. Bhatia, R.: Interpolating the arithmetic-geometric mean inequality and its operator version. Linear Algebra Appl. 413, 355–363 (2006)

    MathSciNet  Google Scholar 

  14. Kittaneh, F., Manasrah, Y.: Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 361, 262–269 (2010)

    MathSciNet  Google Scholar 

  15. Kittaneh, F., Manasrah, Y.: Reverse Young and Heinz inequalities for matrices. Linear Multilinear A. 59(9), 1031–1037 (2011)

    MathSciNet  Google Scholar 

  16. Furuichi, S., Yanagi, K.: Bounds of the logarithmic mean. J. Inequal. Appl. 2013, 535 (2013)

    MathSciNet  Google Scholar 

  17. Krnić, Mario, Pecarić, Josip: Improved Heinz inequalities via the Jensen functional. Cent. Eur. J. Math. 11(9), 1698–1710 (2013)

    MathSciNet  Google Scholar 

  18. Kittaneh, F., Krnic, M.: Refined Heinz operator inequalities. Linear Multilinear A. 61, 1148–1157 (2013)

    MathSciNet  Google Scholar 

  19. Singh, M.: Inequalities involving eigenvalues for difference of operator means. Electron. J. Linear AL. 27, 557–568 (2014)

    MathSciNet  Google Scholar 

  20. Furuichi, S.: On refined Young inequalities and reverse inequalities. J. Math. Inequal. 5(1), 21–31 (2011)

    MathSciNet  Google Scholar 

  21. Furuichi, S., Minculete, N.: Alternative reverse inequalities for Young’s inequality. J. Math. Inequal. 5(4), 595–600 (2011)

    MathSciNet  Google Scholar 

  22. Furuichi, S.: Operator inequalities among arithmetic mean, geometric mean and harmonic mean. J. Math. Inequal. 8(3), 669–672 (2014)

    MathSciNet  Google Scholar 

  23. Zhao, J.-G., Wu, J.-L., Cao, H.-S., et al.: Operator inequalities involving the arithmetic, geometric, Heinz and Heron means. J. Math. Inequal. 8, 747–756 (2014)

    MathSciNet  Google Scholar 

  24. Abbas, H., Mourad, B.: A family of refinements of Heinz inequalities of matrices. J. Inequal. Appl. 2014, 267 (2014)

    MathSciNet  Google Scholar 

  25. Bakherad, M., Moslehian, M.S.: Reverses and variations of Heinz inequality. Linear Multilinear A. 63, 1972–1980 (2015)

    MathSciNet  Google Scholar 

  26. Liang, J., Shi, G.: Refinements of the Heinz operator inequalities. Linear Multilinear A. 63(7), 1337–1344 (2015)

    MathSciNet  Google Scholar 

  27. Fujii, M., Furuichi, S., Nakamoto, R.: Estimations of Heron means for positive operators. J. Math. Inequal. 10(1), 19–30 (2016)

    MathSciNet  Google Scholar 

  28. Ghaemi, M.B., Gharakhanlu, N., Furuichi, S.: On the reverse Young and Heinz inequalities. J. Math. Inequal. 11(3), 641–652 (2017)

    MathSciNet  Google Scholar 

  29. Kapil, Y., Conde, C., Moslehian, M.S., et al.: Norm inequalities related to the Heron and Heinz means. Mediterr. J. Math. 14, 213 (2017)

    MathSciNet  Google Scholar 

  30. Kittaneh, F., Moslehian, M., Sababheh, M.: Quadratic interpolation of the Heinz means. Math. Inequal. Appl. 21(3), 739–757 (2018)

    MathSciNet  Google Scholar 

  31. Liao, W., Long, P.: Operator and matrix inequalities for Heinz mean. Turkish J. Inequal. 2(1), 65–75 (2018)

    Google Scholar 

  32. Sababheh, M.: On the matrix harmonic mean. J. Math. Inequal. 12, 901–920 (2018)

    MathSciNet  Google Scholar 

  33. Dinh, T.H., Dumitru, R., Franco, J.A.: The matrix power means and interpolations. Adv. Oper. Theory 3, 647–654 (2018)

    MathSciNet  Google Scholar 

  34. Ito, M.: Estimations of the Lehmer mean by the Heron mean and their generalizations involving refined Heinz operator inequalities. Adv. Oper. Theory 3, 763–780 (2018)

    MathSciNet  Google Scholar 

  35. Hajmohamadi, M., Lashkaripour, R., Bakherad, M.: Some extensions of the Young and Heinz inequalities for matrices. Bull. Iran. Math. Soc. 44, 977–990 (2018)

    MathSciNet  Google Scholar 

  36. Dragomir, S.S.: Inequalities of Jensen’s type for generalized \(k-g-\)fractional integrals of function \(f\) for which the composite \(f\circ g^{-1}\) is convex. Frac. Differ. Calc. 8(1), 127–150 (2018)

    Google Scholar 

  37. Alakhrass, M., Sababheh, M.: Matrix mixed mean inequalities, Results Math. 74(2) (2019)

  38. Shi, G.: Generalization of Heinz operator inequalities via hyperbolic functions. J. Math. Inequal. 13, 715–724 (2019)

    MathSciNet  Google Scholar 

  39. Sababheh, M., Moradi, H.R., Furuichi, S.: Operator inequalities via geometric convexity. Math. Inequal. Appl. 22(4), 1215–1231 (2019)

    MathSciNet  Google Scholar 

  40. Furuichi, S., Moradi, H.R., Sababheh, M.: New sharp inequalities for operator means. Linear Multilinear A. 67(8), 1567–1578 (2019)

    MathSciNet  Google Scholar 

  41. Moradi, H.R., Furuichi, S., Mitroi, F.C., Naseri, R.: An extension of Jensen’s operator inequality and its application to Young inequality. Rev. Real Acad. Cienc. Exactas Fticas Nat. Ser. Mat. 113(2), 605–614 (2019)

    MathSciNet  Google Scholar 

  42. Zhu, L.: Sharp bounds for Heinz mean by Heron mean and other means. AIMS Math. 5, 723–731 (2020)

    MathSciNet  Google Scholar 

  43. Dragomir, S.: Some inequalities for Heinz operator mean. Math. Moravica 24(1), 71–82 (2020)

    MathSciNet  Google Scholar 

  44. Dodds, P.G., Dodds, T.K., Sukochev, F.A., et al.: Arithmetic-Geometric mean and related submajorisation and norm inequalities for \(\tau \)-measurable operators: Part I. Integr. Equ. Oper. Theory 92, 28 (2020)

    MathSciNet  Google Scholar 

  45. Furuichi, S., Moradi, H.R.: New Kantorovich type inequalities for negative parameters. Anal. Math. 46(4), 747–760 (2020)

    MathSciNet  Google Scholar 

  46. Furuichi, S., Minculete, N.: Refined inequalities on the weighted logarithmic mean. J. Math. Inequal. 14(4), 1347–1357 (2020)

    MathSciNet  Google Scholar 

  47. Moradi, H.R., Furuichi, S.: Improvement and generalization of some Jensen–Mercer-type inequalities. J. Math. Inequal. 14(2), 377–383 (2020)

    MathSciNet  Google Scholar 

  48. Sababheh, M., Furuichi, S., Moradi, H.R.: Composite convex functions. J. Math. Inequal. 15(3), 1267–1285 (2021)

    MathSciNet  Google Scholar 

  49. Sababheh, M., Furuichi, S., Heydarbeygi, Z., Moradi, H.R.: On the arithmetic-geometric mean inequality. J. Math. Inequal. 15(3), 1255–1266 (2021)

    MathSciNet  Google Scholar 

  50. Sababheh, M., Furuichi, S., Sheybani, S., Moradi, H.R.: Singular values inequalities for matrix means. J. Math. Inequal. 16(1), 169–179 (2022)

    MathSciNet  Google Scholar 

  51. Alsaafin, F., Burqan, A.: New ordering relations for the Heinz means via hyperbolic functions. J. Math. Inequal. 16(1), 363–370 (2022)

    MathSciNet  Google Scholar 

  52. Zhu, L.: Sharp bounds for a generalized logarithmic operator mean and Heinz operator mean by weighted ones of classical operator ones. Mathematics 10, 1617 (2022)

    Google Scholar 

  53. Vamanamurthy, K., Vuorinen, M.: Inequalities for means. J. Math. Anal. Appl. 183, 155–166 (1994)

    MathSciNet  Google Scholar 

  54. Anderson, G.D., Qiu, S.-L., Vamanamurthy, M.K., Vuorinen, M.: Generalized elliptic integral and modular equations. Pacific J. Math. 192, 1–37 (2000)

    MathSciNet  Google Scholar 

  55. Biernacki, M., Krzyz, J.: On the monotonicity of certain functionals in the theory of analytic functions. Ann. Univ. M. Curie-Sklodowska 2, 134–145 (1955)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to reviewers for reviewers’ careful corrections and valuable comments on the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Zhu, L. New bounds for a generalized logarithmic mean and Heinz mean. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 67 (2024). https://doi.org/10.1007/s13398-024-01566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-024-01566-3

Keywords

Mathematics Subject Classification

Navigation