Skip to main content
Log in

Spatial-temporal hurdle model vs. spatial zero-inflated GARCH model: analysis of weekly dengue fever cases

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Dengue fever is transmitted to humans through the bite of an infected mosquito and is prevalent in all tropical and subtropical climates worldwide. It is thus essential to model weekly dengue fever counts and other infectious diseases that exhibit spatial-temporal dynamics, overdispersion, spatial dependence, and a high number of zeros. To address these characteristics, this study introduces a spatial hurdle integer-valued GARCH (INGARCH) model and an improved version of the spatial zero-inflated generalized Poisson (ZIGP) INGARCH model with and without meteorological variables. Implementing two parameters in the distance function influences the spatial weight between two locations: one controls the decay rate, while the other shapes the decay curve. We employ these newly designed models to analyze time-series counts of infectious diseases - specifically, weekly cases of dengue hemorrhagic fever in four northeastern provinces of Thailand. Applying these models allow us to offer inferences, predictions, and model selections within a Bayesian framework through Markov chain Monte Carlo (MCMC) methods. We then compare models based on the Bayes factors and the mean squared error of fitting errors. The results for the spatial ZIGP INGARCH models are remarkably good, but the spatial INGARCH model incorporating meteorological variables outperforms the other two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal DK, Gelfand AE, Citron-Pousty S (2002) Zero-inflated models with application to spatial count data. Environ Ecol Stat 9:341–355

    Article  MathSciNet  Google Scholar 

  • Ahmad H, Ali A, Fatima SH et al (2020) Spatial modeling of dengue prevalence and kriging prediction of dengue outbreak in Khyber Pakhtunkhwa (Pakistan) using presence only data. Stoch Environ Res Risk Assess 34:1023–1036

    Article  Google Scholar 

  • Aswi A, Cramb SM, Moraga P, Mengersen K (2019) Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiol Infect 147(e33):1–14

    Google Scholar 

  • Campbell KM, Lin CD, Iamsirithaworn S, Scott TW (2013) The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg 89:1066–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CWS, Chen CS, Hsiung MH (2023) Bayesian modeling of spatial integer-valued time series. Comput Stat Data Anal 188:107827

    Article  MathSciNet  Google Scholar 

  • Chen CWS, Khamthong K (2020) Bayesian modelling of nonlinear negative binomial integer-valued GARCHX models. Stat Model 20:537–561

    Article  MathSciNet  Google Scholar 

  • Chen CWS, Khamthong K, Lee S (2019) Markov switching integer-valued generalized auto-regressive conditional heteroscedastic models for dengue counts. J R Stat Soc Ser C Appl Stat 68:963–983

    Article  MathSciNet  Google Scholar 

  • Chen CWS, Lee S, Khamthong K (2021) Bayesian inference of nonlinear hysteretic integer-valued GARCH models for disease counts. Comput Stat 36:261–281

    Article  MathSciNet  Google Scholar 

  • Chen CWS, Khamthong K, Lee S (2019) Markov switching integer-valued generalized auto-regressive conditional heteroscedastic models for dengue counts. J R Stat Soc Ser C Appl Stat 68:963–983

    Article  MathSciNet  Google Scholar 

  • Chen CWS, So MKP (2006) On a threshold heteroscedastic model. Int J Forecast 22:73–89

    Article  Google Scholar 

  • Chib S (1995) Marginal likelihood from the Gibbs output. J Am Stat Assoc 90:1313–1321

    Article  MathSciNet  Google Scholar 

  • Dalrymple ML, Hudson IL, Ford RPK (2003) Finite mixture, zero-inflated Poisson and hurdle models with application to SIDS. Comput Stat Data Anal 41:491–504

    Article  MathSciNet  Google Scholar 

  • Feng CX (2021) A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. J Stat Distrib Appl 8:8. https://doi.org/10.1186/s40488-021-00121-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Fokianos K, Tjøstheim D (2011) Log-linear poisson autoregression. J Multivar Anal 102:563–576

    Article  MathSciNet  Google Scholar 

  • Guha-Sapir D, Schimmer B (2005) Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol 2:1 (PMID: 15743532)

    Article  PubMed  PubMed Central  Google Scholar 

  • Gschlößl S, Czado C (2008) Modelling count data with overdispersion and spatial effects. Stat Pap 49:531–552

    Article  MathSciNet  Google Scholar 

  • Heilbron DC (1994) Zero-altered and other regression models for count data with added zeros. Biom J 36:531–547

    Article  Google Scholar 

  • Hii YL, Rocklöv J, Ng N, Tang CS, Pang YF, Sauerborn R (2009) Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action 2:124–132

    Article  Google Scholar 

  • Hsieh YH, Chen CWS (2009) Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Trop Med Int Health 14:628–638

    Article  PubMed  Google Scholar 

  • Hu MC, Pavlicova M, Nunes EV (2011) Zero-inflated and hurdle models of count data with extra zeros: examples from an HIV-risk reduction intervention trial. Am J Drug Alcohol Abuse 37:367–75. https://doi.org/10.3109/00952990.2011.597280

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung RC, Kukuk M, Liesenfeld R (2006) Time series of count data: modelling and estimation and diagnostics. Comput Stat Data Anal 51:2350–2364

    Article  Google Scholar 

  • Limkittikul K, Brett J, L’Azou M (2014) Epidemiological trends of dengue disease in Thailand (2000–2011): a systematic literature review. PLoS Negl Trop Dis 8:e3241 (PMID: 25375766)

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe R, Cazelles B, Paul R, Rodó X (2016) Quantifying the added value of climate information in a spatio-temporal dengue model. Stoch Environ Res Risk Assess 30:2067–2078

    Article  Google Scholar 

  • Martínez-Bello DA, López-Quílez A, Torres-Prieto A (2017) Bayesian dynamic modeling of time series of dengue disease case counts. PLoS Negl Trop Dis 11:e0005696 (PMID: 28671941)

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Bello D, López-Quílez A, Prieto AT (2018) Spatiotemporal modeling of relative risk of dengue disease in Colombia. Stoch Environ Res Risk Assess 32:1587–1601

    Article  Google Scholar 

  • Min Y, Agresti A (2005) Random effect models for repeated measures of zero-inflated count data. Stat Model 5:1–19

    Article  MathSciNet  Google Scholar 

  • Mullahy J (1986) Specification and testing of some modified count data models. J Econom 33:341–365

    Article  MathSciNet  Google Scholar 

  • Neelon B, Chang HH, Ling Q, Hastings NS (2016) Spatiotemporal hurdle models for zero-inflated count data: exploring trends in emergency department visits. Stat Methods Med Res 25:2558–2576

    Article  MathSciNet  PubMed  Google Scholar 

  • Rose C, Martin S, Wannemuehler K, Plikaytis B (2006) On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data. J Biopharm Stat 16:463–481

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Tapia-Conyer R, Méndez-Galván J, Burciaga-Zúñiga P (2012) Community participation in the prevention and control of dengue: the patio limpio strategy in Mexico. Paediatr Int Child Health 32(Suppl. 1):10–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Udayanga L, Gunathilaka N, Iqbal MC, Pahalagedara K, Amarasinghe US et al (2018) Socio-economic, knowledge attitude practices (KAP), household related and demographic based appearance of non-dengue infected individuals in high dengue risk areas of Kandy District Sri Lanka. BMC Infect Dis 18:88

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2022) Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

  • Wijaya KP, Aldila D, Erandi KKW, Fakhruddin M et al (2020) Learning from panel data of dengue incidence and meteorological factors in Jakarta, Indonesia. Stoch Environ Res Risk Assess 35:437–456

    Article  Google Scholar 

  • Yu HL, Lee CH, Chien LC (2016) A spatiotemporal dengue fever early warning model accounting for nonlinear associations with hydrological factors: a Bayesian maximum entropy approach. Stoch Environ Res Risk Assess 30:2127–2141

    Article  Google Scholar 

  • Zhu F (2012) Zero-inflated Poisson and negative binomial integer-valued GARCH models. J Stat Plan Inference 142:826–839

    Article  MathSciNet  Google Scholar 

Download references

Funding

National Science and Technology Council, Taiwan (NSTC 112-2118-M-035-001-MY3, NSTC111-2118-M-008-002-MY2).

Author information

Authors and Affiliations

Authors

Contributions

Manuscript conceptualization by: CWSC and CSC. Data curation by: CWSC. Funding acquisition by: CWSCBayesian analysis conducted by: CWSC. Model selection and diagnostic checking by: CWSC. Figures and visualizations prepared by: CWSCWork validation by: CWSC and CSC. Main manuscript text written by: CWSC and CSC. All authors reviewed the manuscript.

Corresponding author

Correspondence to Cathy W. S. Chen.

Ethics declarations

conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 938 KB)

Appendix

Appendix

We aim to obtain the conditional mean and variance for the spatial hurdle INGARCH model as presented in (1). Let \(P(Y_{i,t}=y;{\lambda _{i,t},\eta _i})\) be a GP probability mass function with parameters \(\lambda _{i,t}\) and \(\eta _i\), where the mean and variance are:

$$\begin{aligned} E(Y_{i,t})=\frac{\lambda _{i,t}}{1-\eta _i} \end{aligned}$$

and

$$\begin{aligned} \hbox{Var}(Y_{i,t})=\frac{\lambda _{i,t}}{(1-\eta _i)^3} \end{aligned}$$

The conditional mean \(E(Y_{i,t}|\mathcal {F}_{t-1})\) and variance \(\hbox{Var}(Y_{i,t}|\mathcal {F}_{t-1})\) can then be derived as follows:

$$\begin{aligned} E(Y_{i,t}|\mathcal {F}_{t-1})= & {} \displaystyle \sum _{y\ge 0}yP(Y_{i,t}=y)\\= & {} \displaystyle \sum _{y>0}y\pi _{i,t}TGP(y;\lambda _{i,t},\eta _i)\\= & {} \displaystyle \sum _{y>0}y\pi _{i,t}\frac{P(y;{\lambda _{i,t},\eta _i})}{1-P(y=0;{\lambda _{i,t},\eta _i})}\\= & {} \frac{\pi _{i,t}}{1-\exp (-\lambda _{i,t})}\displaystyle \sum _{y>0}yP(y;{\lambda _{i,t},\eta _i})\\= & {} \frac{\pi _{i,t}}{1-\exp (-\lambda _{i,t})}\displaystyle \sum _{y\ge 0}yP(y;{\lambda _{i,t},\eta _i})\\= & {} \frac{\pi _{i,t}\lambda _{i,t}}{(1-\exp (-\lambda _{i,t}))(1-\eta _i)}\\ \hbox{Var}(Y_{i,t}|\mathcal {F}_{t-1})= & {} E(Y_{i,t}^2|\mathcal {F}_{t-1})-\left( E(Y_{i,t}|\mathcal {F}_{t-1})\right) ^2\\= & {} \displaystyle \sum _{y\ge 0}y^2P(Y_{i,t}=y)-\left( \displaystyle \sum _{y\ge 0}yP(Y_{i,t}=y)\right) ^2\\= & {} \displaystyle \sum _{y>0}y^2\pi _{i,t}TGP(y;\lambda _{i,t},\eta _i)-\left( \displaystyle \sum _{y>0}y\pi _{i,t}TGP(y;\lambda _{i,t},\eta _i)\right) ^2\\= & {} \pi _{i,t}\displaystyle \sum _{y\ge 0}y^2TGP(y;\lambda _{i,t},\eta _i)-\pi _{i,t}^2\left( \displaystyle \sum _{y\ge 0}yTGP(y;\lambda _{i,t},\eta _i)\right) ^2\\= & {} \pi _{i,t}\displaystyle \sum _{y\ge 0}y^2\frac{P(y;{\lambda _{i,t},\eta _i})}{1-P(y=0;{\lambda _{i,t},\eta _i})}-\pi _{i,t}^2\left( \displaystyle \sum _{y\ge 0}y\frac{P(y;{\lambda _{i,t},\eta _i})}{1-P(y=0;{\lambda _{i,t},\eta _i})}\right) ^2\\= & {} \frac{\pi _{i,t}}{1-\exp (-\lambda _{i,t})}\displaystyle \sum _{y\ge 0}y^2P(y;{\lambda _{i,t},\eta _i})-\left( \frac{\pi _{i,t}}{1-\exp (-\lambda _{i,t})}\right) ^2\left( \displaystyle \sum _{y\ge 0}yP(y;{\lambda _{i,t},\eta _i})\right) ^2\\= & {} \frac{\pi _{i,t}}{1-\exp (-\lambda _{i,t})}\left( \frac{\lambda _{i,t}}{(1-\eta _i)^3}+\left( \frac{\lambda _{i,t}}{1-\eta _i}\right) ^2\right) -\left( \frac{\pi _{i,t}}{1-\exp (-\lambda _{i,t})}\right) ^2\left( \frac{\lambda _{i,t}}{1-\eta _i}\right) ^2 \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C.W.S., Chen, CS. Spatial-temporal hurdle model vs. spatial zero-inflated GARCH model: analysis of weekly dengue fever cases. Stoch Environ Res Risk Assess (2024). https://doi.org/10.1007/s00477-024-02671-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00477-024-02671-w

Keywords

Navigation