Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heparanase interacting BCLAF1 to promote the development and drug resistance of ICC through the PERK/eIF2α pathway

Abstract

Intrahepatic cholangiocarcinoma (ICC) is a primary epithelial carcinoma known for its aggressive nature, high metastatic potential, frequent recurrence, and poor prognosis. Heparanase (HPSE) is the only known endogenous β-glucuronidase in mammals. In addition to its well-established enzymatic roles, HPSE critically exerts non-catalytic function in tumor biology. This study herein aimed to investigate the non-enzymatic roles of HPSE as well as relevant regulatory mechanisms in ICC. Our results demonstrated that HPSE was highly expressed in ICC and promoted the proliferation of ICC cells, with elevated HPSE levels implicating a poor overall survival of ICC patients. Notably, HPSE interacted with Bcl-2-associated factor 1 (BCLAF1) to upregulate the expression of Bcl-2, which subsequently activated the PERK/eIF2α-mediated endoplasmic reticulum (ER) stress pathway to promote anti-apoptotic effect of ICC. Moreover, our in vivo experiments revealed that concomitant administration of gemcitabine and the Bcl-2 inhibitor navitoclax enhanced the sensitivity of ICC cells with highly expressed HPSE to chemotherapy. In summary, our findings revealed that HPSE promoted the development and drug resistance of ICC via its non-enzymatic function. Bcl-2 may be considered as an effective target with therapeutic potential to overcome ICC chemotherapy resistance induced by HPSE, presenting valuable insights into the development of novel therapeutic strategies against ICC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpression of HPSE in ICC.
Fig. 2: HPSE promoted ICC progression.
Fig. 3: HPSE activated the PERK/eIF2α pathway in ICC.
Fig. 4: The interaction between HPSE and BCLAF1 promoted the anti-apoptosis of ICC cells.
Fig. 5: Combined application of gemcitabine with Bcl-2 inhibitor navitoclax inhibited progression of ICC.
Fig. 6: HPSE is highly expressed in ICC and is positively associated with poor prognosis.

Similar content being viewed by others

Data availability

The data and materials that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Moris D, Palta M, Kim C, Allen PJ, Morse MA, Lidsky ME. Advances in the treatment of intrahepatic cholangiocarcinoma: an overview of the current and future therapeutic landscape for clinicians. CA Cancer J Clin. 2023;73:198–222.

    Article  PubMed  Google Scholar 

  2. Sirica AE, Gores GJ, Groopman JD, Selaru FM, Strazzabosco M, Wei Wang X, et al. Intrahepatic cholangiocarcinoma: continuing challenges and translational advances. Hepatology. 2019;69:1803–15.

    Article  PubMed  Google Scholar 

  3. Jarnagin WR, Fong Y, DeMatteo RP, Gonen M, Burke EC, Bodniewicz BJ, et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg. 2001;234:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl J Med. 2010;362:1273–81.

    Article  CAS  PubMed  Google Scholar 

  5. Lamarca A, Palmer DH, Wasan HS, Ross PJ, Ma YT, Arora A, et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021;22:690–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ben-Josef E, Guthrie KA, El-Khoueiry AB, Corless CL, Zalupski MM, Lowy AM, et al. SWOG S0809: a phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol. 2015;33:2617–22.

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88.

    Article  CAS  PubMed  Google Scholar 

  8. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397:271–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Shen J, Chen X, Hendershot L, Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 2002;3:99–111.

    Article  CAS  PubMed  Google Scholar 

  10. Shoulders MD, Ryno LM, Genereux JC, Moresco JJ, Tu PG, Wu C, et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 2013;3:1279–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168:692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hou X, Liu Y, Liu H, Chen X, Liu M, Che H, et al. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2’s mitochondria translocation. Sci Rep. 2015;5:9065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69:169–81.

    Article  CAS  PubMed  Google Scholar 

  15. Bu Y, Diehl JA. PERK integrates oncogenic signaling and cell survival during cancer development. J Cell Physiol. 2016;231:2088–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schewe DM, Aguirre-Ghiso JA. ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA. 2008;105:10519–24.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suwanmanee G, Yosudjai J, Phimsen S, Wongkham S, Jirawatnotai S, Kaewkong W. Upregulation of AGR2vH facilitates cholangiocarcinoma cell survival under endoplasmic reticulum stress via the activation of the unfolded protein response pathway. Int J Mol Med. 2020;45:669–77.

    PubMed  Google Scholar 

  18. Hoffmeister-Wittmann P, Mock A, Nichetti F, Korell F, Heilig CE, Scherr AL, et al. Bcl-x(L) as prognostic marker and potential therapeutic target in cholangiocarcinoma. Liver Int. 2022;42:2855–70.

    Article  CAS  PubMed  Google Scholar 

  19. Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JH, Proia TA, et al. Epithelial-to-mesenchymal transition activates PERK-eIF2alpha and sensitizes cells to endoplasmic reticulum stress. Cancer Discov. 2014;4:702–15.

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Song H, Luo J, Liang J, Zhao S, Su R. Knockdown of glucose-regulated protein 78 decreases the invasion, metalloproteinase expression and ECM degradation in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2012;31:39.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao G, Kang J, Xu G, Wei J, Wang X, Jing X, et al. Tunicamycin promotes metastasis through upregulating endoplasmic reticulum stress induced GRP78 expression in thyroid carcinoma. Cell Biosci. 2020;10:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Escobar Galvis ML, Jia J, Zhang X, Jastrebova N, Spillmann D, Gottfridsson E, et al. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol. 2007;3:773–8.

    Article  CAS  PubMed  Google Scholar 

  23. Fairbanks MB, Mildner AM, Leone JW, Cavey GS, Mathews WR, Drong RF, et al. Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem. 1999;274:29587–90.

    Article  CAS  PubMed  Google Scholar 

  24. Bohlmann L, Tredwell GD, Yu X, Chang CW, Haselhorst T, Winger M, et al. Functional and structural characterization of a heparanase. Nat Chem Biol. 2015;11:955–7.

    Article  CAS  PubMed  Google Scholar 

  25. Weissmann M, Arvatz G, Horowitz N, Feld S, Naroditsky I, Zhang Y, et al. Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proc Natl Acad Sci USA. 2016;113:704–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, et al. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis. 2016;7:e2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu M, Xu X, Peng K, Hou P, Yuan Y, Li S, et al. Heparanase modulates the prognosis and development of BRAF V600E-mutant colorectal cancer by regulating AKT/p27Kip1/Cyclin E2 pathway. Oncogenesis 2022;11:58.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zahavi T, Salmon-Divon M, Salgado R, Elkin M, Hermano E, Rubinstein AM, et al. Heparanase: a potential marker of worse prognosis in estrogen receptor-positive breast cancer. NPJ Breast Cancer. 2021;7:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen X, Cheng B, Dai D, Wu Y, Feng Z, Tong C, et al. Heparanase induces necroptosis of microvascular endothelial cells to promote the metastasis of hepatocellular carcinoma. Cell Death Discov. 2021;7:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vlodavsky I, Goldshmidt O, Zcharia E, Atzmon R, Rangini-Guatta Z, Elkin M, et al. Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol. 2002;12:121–9.

    Article  CAS  PubMed  Google Scholar 

  31. Goldberg R, Meirovitz A, Hirshoren N, Bulvik R, Binder A, Rubinstein AM, et al. Versatile role of heparanase in inflammation. Matrix Biol. 2013;32:234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77.

    Article  CAS  PubMed  Google Scholar 

  33. Hammond E, Khurana A, Shridhar V, Dredge K. The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancer therapeutics. Front Oncol. 2014;4:195.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol. 2006;38:2018–39.

    Article  CAS  PubMed  Google Scholar 

  35. Rivara S, Milazzo FM, Giannini G. Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem. 2016;8:647–80.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Z, Azadzoi KM, Choi HP, Jing R, Lu X, Li C, et al. LC-MS/MS analysis unravels deep oxidation of manganese superoxide dismutase in kidney cancer. Int J Mol Sci. 2017;18:319.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kasof GM, Goyal L, White E. Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol. 1999;19:4390–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Renert AF, Leprince P, Dieu M, Renaut J, Raes M, Bours V, et al. The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells. J Proteome Res. 2009;8:4810–22.

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Lu ZG, Miki Y, Yoshida K. Protein kinase C delta induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol. 2007;27:8480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hulett MD, Hornby JR, Ohms SJ, Zuegg J, Freeman C, Gready JE, et al. Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry. 2000;39:15659–67.

    Article  CAS  PubMed  Google Scholar 

  41. Eckel F, Schmid RM. Chemotherapy and targeted therapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials. Chemotherapy. 2014;60:13–23.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, et al. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun. 2022;13:1199.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–8.

    Article  CAS  PubMed  Google Scholar 

  44. Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60:1268–89.

    Article  PubMed  Google Scholar 

  45. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17:557–88.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Graham RP, Barr Fritcher EG, Pestova E, Schulz J, Sitailo LA, Vasmatzis G, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol. 2014;45:1630–8.

    Article  CAS  PubMed  Google Scholar 

  47. Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N, Nakamura H, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59:1427–34.

    Article  CAS  PubMed  Google Scholar 

  48. Sia D, Losic B, Moeini A, Cabellos L, Hao K, Revill K, et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun. 2015;6:6087.

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Jayatilleke KM, Hulett MD. Heparanase and the hallmarks of cancer. J Transl Med. 2020;18:453.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: underlying molecular mechanisms. Matrix Biol. 2019;75-76:220–59.

    Article  CAS  PubMed  Google Scholar 

  51. Masola V, Zaza G, Gambaro G, Franchi M, Onisto M. Role of heparanase in tumor progression: Molecular aspects and therapeutic options. Semin Cancer Biol. 2020;62:86–98.

    Article  CAS  PubMed  Google Scholar 

  52. Coombe DR, Gandhi NS. Heparanase: a challenging cancer drug target. Front Oncol. 2019;9:1316.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dredge K, Brennan TV, Hammond E, Lickliter JD, Lin L, Bampton D, et al. A phase I study of the novel immunomodulatory agent PG545 (pixatimod) in subjects with advanced solid tumours. Br J Cancer. 2018;118:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Galli M, Chatterjee M, Grasso M, Specchia G, Magen H, Einsele H, et al. Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy. Haematologica. 2018;103:e469–e472.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ilan N, Bhattacharya U, Barash U, Boyango I, Yanku Y, Gross-Cohen M, et al. Heparanase-the message comes in different flavors. Adv Exp Med Biol. 2020;1221:253–83.

    Article  CAS  PubMed  Google Scholar 

  56. Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, et al. Heparanase: from basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat. 2016;29:54–75.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, et al. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 2009;186:783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18:3066–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–9.

    Article  CAS  PubMed  Google Scholar 

  60. Brown GT, Cash B, Alnabulsi A, Samuel LM, Murray GI. The expression and prognostic significance of bcl-2-associated transcription factor 1 in rectal cancer following neoadjuvant therapy. Histopathology. 2016;68:556–66.

    Article  PubMed  Google Scholar 

  61. Wen Y, Zhou X, Lu M, He M, Tian Y, Liu L, et al. Bclaf1 promotes angiogenesis by regulating HIF-1alpha transcription in hepatocellular carcinoma. Oncogene. 2019;38:1845–59.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou X, Wen Y, Tian Y, He M, Ke X, Huang Z, et al. Heat shock protein 90alpha-dependent B-cell-2-associated transcription factor 1 promotes hepatocellular carcinoma proliferation by regulating MYC proto-oncogene c-MYC mRNA stability. Hepatology. 2019;69:1564–81.

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Olberding KE, White C, Li C. Bcl-2 proteins regulate ER membrane permeability to luminal proteins during ER stress-induced apoptosis. Cell Death Differ. 2011;18:38–47.

    Article  PubMed  Google Scholar 

  64. Huang T, Ding X, Xu G, Chen G, Cao Y, Peng C, et al. CDK7 inhibitor THZ1 inhibits MCL1 synthesis and drives cholangiocarcinoma apoptosis in combination with BCL2/BCL-XL inhibitor ABT-263. Cell Death Dis. 2019;10:602.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The results shown in Fig. 1A are in part based on data generated by the TCGA Research Network (https://ualcan.path.uab.edu/). The results in Supplementary Fig. 1 were obtained from the R2 bioinformatics database (https://hgserver1.amc.nl).

Funding

This work was supported by Grants from the National Natural Science Foundation of China (81874193), the High-Level Talents Converging Program of Hunan Province (2019RS1041), Natural Science Foundation of Hunan Province (2021JJ30465), the Research Team for Reproduction Health and Translational Medicine of Hunan Normal University (2023JC101), and Developmental Biology and Breeding (2022XKQ0205).

Author information

Authors and Affiliations

Authors

Contributions

XY, HL, and MvI conceived and designed the study. Data acquisition was performed by FY, HZ, CL, YW, JQ, and JL, and all authors contributed to data interpretation. FY wrote the first draft and XY, HL, and MvI critically revised the manuscript for important intellectual contents. All authors revised further drafts and approved the submission.

Corresponding authors

Correspondence to Hao Li, Mark von Itzstein or Xing Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Animal Studies: All animal care and experimental protocols were approved by the Ethics Committee of Hunan Normal University (D2020281).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Zhou, H., Liu, C. et al. Heparanase interacting BCLAF1 to promote the development and drug resistance of ICC through the PERK/eIF2α pathway. Cancer Gene Ther (2024). https://doi.org/10.1038/s41417-024-00754-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41417-024-00754-y

Search

Quick links