Skip to main content
Log in

A proposed multiphysics comparison of different alloy compositions for electro-thermomechanical reliability analysis

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Given the tremendous growth of the microelectronics industry in recent years, soldering efficiency is more crucial than ever. Despite the great importance of the solder joints, these interconnections happen to be the weakest link in electronic packaging. Many surveys have been carried out in order to investigate their thermomechanical reliability but still incomplete since the electro-thermomechanical reliability is the one encountered in real operational services. A thorough insight into the multiphysics behavior of Pb-free solder joints is fundamental to enhancing the operational efficiency since the extent of their deterioration is a significant function of their compositions. This article investigates the response of various solder alloys (Sn63Pb37, SAC105, SAC305, SAC405, and InnoLot) to electrothermal loadings. The study explores their performance under different temperature conditions and examines factors such as melting temperature variations, residual stresses, and the impact of the IMC layer. The results highlight the superior reliability of SAC405, particularly regarding inelastic strain and premature damage. The study underscores the significance of mitigating these factors during electronics design and manufacturing to enhance solder joint lifetime. The findings contribute to advancing solder alloy reliability and improving electronic system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

BGA :

Ball grid array

PCB :

Printed circuit board

FEM :

Finite element method

CTE :

Coefficient thermal expansion

ATC :

Active thermal cycling

PTC :

Passive thermal cycling

JEDEC :

Joint Electron Device Engineering Council

JEIDA :

Japan Electronic Industry Development Association

IMC :

Intermetallic compound

SMT :

Surface mount technology

RoHS :

Restriction of hazardous substances

λ :

Thermal conductivity

α :

Coefficient of thermal expansion

Cp :

Specific heat at constant pressure

E :

Elastic modulus

ϱ :

Density

ν :

Poisson’s ratio

ρ :

Electrical resistivity

\({\Delta\upvarepsilon }_{{\text{p}}}\) :

Plastic deformation amplitude

T :

Temperature

V :

Voltage

References

  1. Shin Y-E, Lee J-H, Koh Y-W, Lee C-W, Yun J-H, Jung S-B (2002) A study on ,uBGA solder joints reliability using lead-free solder materials

  2. Dompierre Benoît (2011) Fiabilité mécanique des assemblages électroniques utilisant des alliages du type SnAgCu. https://doi.org/10.13140/2.1.4381.9200

  3. Jean-baptiste Libot M et al (2017) Méthodologie d’évaluation de la durée de vie des assemblages

  4. Makhloufi A, Aoues Y, el Hami A (2016) Reliability based design optimization of wire bonding in power microelectronic devices. Microsyst Technol 22(12). https://doi.org/10.1007/s00542-016-3151-5

  5. Dammak K, el Hami A, Koubaa S, Walha L, Haddar M (2017) Reliability based design optimization of coupled acoustic-structure system using generalized polynomial chaos. Int J Mech Sci 134. https://doi.org/10.1016/j.ijmecsci.2017.10.003

  6. el Hami A, Radi B (2011) Comparison study of different reliability-based design optimization approaches. Adv Mat Res 274 https://doi.org/10.4028/www.scientific.net/AMR.274.113

  7. Philippe P et al (2020) Analysis of failures, modeling, simulation and optimization. ISTE Press - Elsevier

  8. Elhami A, Lallement G, Minotti P, Cogan S (1993) Methods that combine finite group theory with component mode synthesis in the analysis of repetitive structures. Comput Struct 48(6). https://doi.org/10.1016/0045-7949(93)90432-D

  9. el Hami A, Radi B, Cherouat A (2009) Treatment of the composite fabric’s shaping using a Lagrangian formulation. Math Comput Model 49(7–8). https://doi.org/10.1016/j.mcm.2008.09.016

  10. ben Abdessalem A, El-Hami A (2015) A probabilistic approach for optimising hydroformed structures using local surrogate models to control failures. Int J Mech Sci 96–97. https://doi.org/10.1016/j.ijmecsci.2015.04.002

  11. Yang KC, Lee SH, Kim JM, Choi YK, Farson DF, Shin YE (2009) Characteristics of Sn-2.5Ag flip chip solder joints under thermal shock test conditions. J Mech Sci Technol 23(2):435–441. https://doi.org/10.1007/s12206-008-1124-z

    Article  Google Scholar 

  12. Han C, Han B (2014) Board level reliability analysis of chip resistor assemblies under thermal cycling: a comparison study between SnPb and SnAgCu. J Mech Sci Technol 28(3):879–886. https://doi.org/10.1007/s12206-013-1154-z

    Article  MathSciNet  Google Scholar 

  13. Petrone G, Cammarata G (nd) Numerical modelling for thermal design of electronic equipments. [Online]. Available: www.intechopen.com

  14. Harvest J, Student G, Fleischer AS, Weinstein RD (nd) Thermal management of heat generating devices in close proximity on printed circuit boards.” [Online]. Available: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/ht2005/72567/

  15. Harvest J, Fleischer AS, Weinstein RD (2007) Modeling of the thermal effects of heat generating devices in close proximity on vertically oriented printed circuit boards for thermal management applications. Int J Therm Sci 46(3):253–261. https://doi.org/10.1016/j.ijthermalsci.2006.04.018

    Article  CAS  Google Scholar 

  16. Depiver JA, Mallik S, Amalu EH (2021) Thermal fatigue life of ball grid array (BGA) solder joints made from different alloy compositions. Eng Fail Anal 125. https://doi.org/10.1016/j.engfailanal.2021.105447

  17. Depiver Joshua Adeniyi, Sabuj Mallik, Yiling Lu (2020) Thermo-mechanical reliability studiesof lead-free solder interconnects

  18. Ayda Halouani, Cherouat Abel, Haddar Mohamed (2020) Modélisation et simulation multi-physique pour la fiabilisation des composants électroniques

  19. van Nhat Le (2017) Modélisation de la tenue en fatigue des joints de brasure dans un module de puissance

  20. Ghenam S, Elhami A, Akrout A, Gafsi W, Haddar M (2022) Electro-thermomechanical modelling of a BGA assembly subjected to a damaging displacement and to random vibrations. 353–364. https://doi.org/10.1007/978-3-030-84958-0_38

  21. Hegde P, Ochana AR, Whalley DC, Silberschmidt VV (2008) Finite element analysis of lead-free surface mount devices. Comput Mater Sci 43(1):212–220. https://doi.org/10.1016/j.commatsci.2007.07.046

    Article  ADS  CAS  Google Scholar 

  22. Depiver JA, Mallik S, Harmanto D (2021) Solder joint failures under thermo-mechanical loading conditions–a review. Adv Mater Process Technol 7(1). Taylor and Francis Ltd., pp. 1–26. https://doi.org/10.1080/2374068X.2020.1751514

  23. Cheng S, Huang CM, Pecht M (2017) A review of lead-free solders for electronics applications. Microelectron Reliab 75. Elsevier Ltd, pp. 77–95. https://doi.org/10.1016/j.microrel.2017.06.016

  24. Jedec standard power and temperature cycling Jedec solid state technology association.” [Online]. Available: www.jedec.org

  25. JESD22-A104F (2020) Jedec standard temperature cycling. [Online]. Available: www.jedec.org

  26. Marc G, Yves B, Jacques R (nd) Étude de la fatigue des joints brases de composants electroniques soumis à des sollicitations thermomecaniques, vibratoires et combinees

  27. Yao Y, Keer LM, Fine ME (2010) Modeling the failure of intermetallic/solder interfaces. Intermetallics (Barking) 18(8):1603–1611. https://doi.org/10.1016/j.intermet.2010.04.016

    Article  CAS  Google Scholar 

  28. Feng J, Hang C, Tian Y, Liu B, Wang C (2018) Growth kinetics of Cu6Sn5 intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current. Sci Rep 8(1):1775. https://doi.org/10.1038/s41598-018-20100-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holm A (2005) Book Review: Sia Nemat-Nasser, Plasticity -a treatise on finite deformation of heterogeneous inelastic materials

  30. Bonaventure A, Montay G, Ayrault D (2012) Evaluation expérimentale et numérique des contraintes résiduelles dans des structures soudées en multipasse

  31. Bin Y, Xiaofeng W, Yabing Z (2018) The study of thermally induced warpage of BGA package during reflow soldering,” in 19th International Conference on Electronic Packaging Technology

  32. Berthou M (2012) Fiabilité des assemblages sans plomb en environnement sévère. Universit ́e Sciences et Technologies, Bordeaux

  33. Libot J-B et al (2018) Experimental strain energy density dissipated in SAC305 solder joints during different thermal cycling conditions using strain gages measurements. 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), vol. 29, pp. 748–755, https://doi.org/10.1109/ECTC.2018.00116ï

  34. Pierce DM, Sheppard SD, Vianco PT, Regent JA, Grazier JM (2008) Validation of a general fatigue life prediction methodology for Sn-Ag-Cu lead-free solder alloy interconnects. J Electron Packag Trans ASME 130(1):0110031–01100312. https://doi.org/10.1115/1.2837515

    Article  CAS  Google Scholar 

  35. Che FX, Pang JHL (2012) Characterization of IMC layer and its effect on thermomechanical fatigue life of Sn-3.8Ag-0.7Cu solder joints. J Alloys Compd 541:6–13. https://doi.org/10.1016/j.jallcom.2012.06.104

    Article  CAS  Google Scholar 

  36. Zanella S (nd) Creep fatigue interaction in solder joint alloys of electronic packages

  37. Ooi EP et al (nd) Fracture behaviour of intermetallic compound (IMC) of solder joints based on finite element simulation result.” [Online]. Available: https://www.researchgate.net/publication/309430759

  38. Mabrouk IB, el Hami A, Walha L, Zghal B, Haddar M (2017) Dynamic vibrations in wind energy systems: application to vertical axis wind turbine. Mech Syst Signal Process 85. https://doi.org/10.1016/j.ymssp.2016.08.034.

  39. Guerine A, el Hami A, Walha L, Fakhfakh T, Haddar M (2018) Dynamic response of a spur gear system with uncertain friction coefficient. Adv Eng Softw 120. https://doi.org/10.1016/j.advengsoft.2016.05.009

  40. Hamdani H, el Hami A, Radi B (2019) Reliability analysis of tape based chip-scale packages based metamodel. Microelectron Reliab 102. https://doi.org/10.1016/j.microrel.2019.113445

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinda Ghenam.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission X - Structural Performances of Welded Joints - Fracture Avoidance

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghenam, S., Hami, A.E., Gafsi, W. et al. A proposed multiphysics comparison of different alloy compositions for electro-thermomechanical reliability analysis. Weld World (2024). https://doi.org/10.1007/s40194-024-01743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40194-024-01743-3

Keywords

Navigation