Skip to main content
Log in

Electronic Structure and X-Ray Absorption Near Edge Spectroscopy of Copper Oxides

  • Published:
Inorganic Materials Aims and scope

Abstract—

In this paper, we report a theoretical study of the electronic structure of copper oxides. The band structure of the copper oxides Cu2O and CuO has been calculated in the density functional approach by the full-potential linearized augmented plane wave method, using the modified Becke–Johnson (mBJ) potential. The results demonstrate that the use of the modified Becke–Johnson potential ensures better agreement of band structure calculation results for the copper oxides with experimental data then does the generalized gradient approximation (GGA). The use of the mBJ potential allows both compounds to be described as semiconductors whose band structure parameters are in qualitative agreement with experimental data. We have calculated copper L3-edge and oxygen K-edge X-ray absorption near edge structure spectra of Cu2O and CuO at different occupancies of the core level from which an electron transition occurs and compared the calculation results with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Sharshir, S.W., El-Shafai, N.M., Ibrahim, M.M., Kandeal, A.W., El-Sheshtawy, H.S., Ramadan, M.S., Rashad, M., and El-Mehasseb, I.M., Effect of copper oxide/cobalt oxide nanocomposite on phase change material for direct/indirect solar energy applications: experimental investigation, J. Energy Storage, 2021, vol. 38, p. 102526. https://doi.org/10.1016/j.est.2021.102526

    Article  Google Scholar 

  2. Dutta, P., Mandal, R., Bhattacharyya, S., Dey, R., and Dhar, R.S., Fabrication and characterization of copper based semiconducting materials for optoelectronic applications, Microsyst. Technol., 2021, vol. 27, p. 3475. https://doi.org/10.1007/s00542-020-05145-5

    Article  CAS  Google Scholar 

  3. Kwon, J., Cho, H., Jung, J., Lee, H., Hong, S., Yeo, J., Han, S., and Ko, .H., ZnO/CuO/M (M = Ag, Au) hierarchical nanostructure by successive photoreduction process for solar hydrogen generation, Nanomaterials, 2018, vol. 8, no. 5, p. 323. https://doi.org/10.3390/nano8050323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Majumdar, D. and Ghosh, S., Recent advancements of copper oxide based nanomaterials for supercapacitor applications, J. Energy Storage, 2021, vol. 34, p. 101995. https://doi.org/10.1016/j.est.2020.101995

    Article  Google Scholar 

  5. Majumder, T., Das, D., Jena, S., Mitra, A., Dasa, S., and Majumder, S.B., Electrophoretic deposition of metal-organic framework derived porous copper oxide anode for lithium and sodium ion rechargeable cells, J. Alloys Compd., 2021, vol. 879, p. 160462. https://doi.org/10.1016/j.jallcom.2021.160462

    Article  CAS  Google Scholar 

  6. Kwon, H., Kim, J., Ko, K., Matthewsc, M.J., Suh, J., Kwon, H.J., and Yoo, J.H., Laser-induced digital oxidation for copper-based flexible photodetectors, Appl. Surf. Sci., 2021, vol. 540, p. 14833. https://doi.org/10.1016/j.apsusc.2020.148333

    Article  CAS  Google Scholar 

  7. Rahman, M.M., Alam, M.M., Hussain, M.M., Asiri, A.M., and Zayed, M.E.M., Hydrothermally prepared Ag2O/CuO nanomaterial for an efficient chemical sensor development for environmental remediation, Environ. Nanotechnol. Monit. Manage., 2018, vol. 10, pp. 1–9. https://doi.org/10.1016/j.enmm.2018.04.001

    Article  CAS  Google Scholar 

  8. Hebert, C., Luitz, J., and Schattschneider, P., Improvement of energy loss near edge structure calculation using Wien2k, Micron, 2003, vol. 34, pp. 219–225. https://doi.org/10.1016/S0968-4328(03)00030-1

    Article  PubMed  CAS  Google Scholar 

  9. Kurganskii, S.I., Manyakin, M.D., Dubrovskii, O.I., Chuvenkova, O.A., Turishchev, S.Yu., and Domashevskaya, E.P., Theoretical and experimental study of the electronic structure of tin dioxide, Phys. Solid State, 2014, vol. 56, no. 9, pp. 1748–1753. https://doi.org/10.1134/S1063783414090170

    Article  ADS  CAS  Google Scholar 

  10. Manyakin, M.D., Kurganskii, S.I., Dubrovskii, O.I., Chuvenkova, O.A., Domashevskaya, E.P., Ryabtsev, S.V., Ovsyannikov, R., Parinova, E.V., Sivakov, V., and Turishchev, S.Yu., Electronic and atomic structure studies of tin oxide layers using X-ray absorption near edge structure spectroscopy data modelling, Mater. Sci. Semicond. Process., 2019, vol. 99, pp. 28–33. https://doi.org/10.1016/j.mssp.2019.04.006

    Article  CAS  Google Scholar 

  11. Nesvizhskii, A.I. and Rehr, J.J., L-edge XANES of 3d-transition metals, J. Synchrotron Radiat., 1999, vol. 6, pp. 315–316. https://doi.org/10.1107/S0909049599001697

    Article  PubMed  CAS  Google Scholar 

  12. Slater, J., The Self-Consistent Field for Molecules and Solids, New York: McGraw-Hill, 1975.

    Google Scholar 

  13. Grioni, M., van Acker, J.F., Czyzyk, M.T., and Fuggle, J.C., Unoccupied electronic structure and core-hole effects in the X-ray-absorption spectra of Cu2O, Phys. Rev. B: Condens. Matter. Mater. Phys., 1992, vol. 45, pp. 3309–3312. https://doi.org/10.1103/PhysRevB.45.3309

    Article  ADS  CAS  Google Scholar 

  14. Meyer, B.K., Polity, A., Reppin, D., Becker, M., Hering, P., Klar, P.J., Sander, T., Reindl, C., Benz, J., Eickhoff, M., Heiliger, C., Heinemann, M., Blasing, J., Krost, A., Shokovets, S., Muller, C., and Ronning, C., Binary copper oxide semiconductors: from materials towards devices, Phys. Status Solidi B, 2012, vol. 249, pp. 1487–1509. https://doi.org/10.1002/pssb.201248128

    Article  ADS  CAS  Google Scholar 

  15. Wu, D., Zhang, Q., and Tao, M., LSDA + U study of cupric oxide: electronic structure and native point defects, Phys. Rev. B: Condens. Matter. Mater. Phys., 2006, vol. 73, p. 235206. https://doi.org/10.1103/PhysRevB.73.235206

    Article  ADS  CAS  Google Scholar 

  16. Nolan, M. and Elliott, S.D., The p-type conduction mechanism in Cu2O: a first principles study, Phys. Chem. Chem. Phys., 2006, vol. 8, pp. 5350–5358. https://doi.org/10.1039/B611969G

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz, K., Blaha, P., and Madsen, G.K.H., Electronic structure calculations of solids using the WIEN2k package for material sciences, Comput. Phys. Commun., 2002, vol. 147, pp. 71–76. https://doi.org/10.1016/S0010-4655(02)00206-0

    Article  ADS  Google Scholar 

  18. Tran, F. and Blaha, P., Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett., 2009, vol. 102, p. 226401. https://doi.org/10.1103/PhysRevLett.102.226401

    Article  ADS  PubMed  CAS  Google Scholar 

  19. Ruiz, E., Alvarez, S., Alemany, P., and Evarestov, R.A., Electronic structure and properties of Cu2O, Phys. Rev. B: Condens. Matter. Mater. Phys., 1997, vol. 56, p. 7189. https://doi.org/10.1103/PhysRevB.56.7189

    Article  ADS  CAS  Google Scholar 

  20. Asbrink, S. and Norrby, L.J., A refinement of the crystal structure of copper(II) oxide with a discussion of some exceptional E.s.d.'s, Acta Crystallogr., Sect. B: Struct. Sci., 1970, vol. 26, pp. 8–15. https://doi.org/10.1107/S0567740870001838

    Article  ADS  CAS  Google Scholar 

  21. Heinemann, M., Eifert, B., and Heiliger, C., Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3, Phys. Rev. B: Condens. Matter. Mater. Phys., 2013, vol. 87, p. 11511. https://doi.org/10.1103/PhysRevB.87.115111

    Article  CAS  Google Scholar 

  22. Wang, Y., Lany, S., Ghanbaja, J., Fagot-Revurat, Y., Chen, Y.P., Soldera, ., Horwat, D., Mucklich, F., and Pierson, J.F., Electronic structures of Cu2O, Cu4O3, and CuO: a joint experimental and theoretical study, Phys. Rev. B: Condens. Matter. Mater. Phys., 2016, vol. 94, p. 245418. https://doi.org/10.1103/PhysRevB.94.245418

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, agreement no. 075-15-2021-1351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Radina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radina, V.R., Manyakin, M.D. & Kurganskii, S.I. Electronic Structure and X-Ray Absorption Near Edge Spectroscopy of Copper Oxides. Inorg Mater 59, 1111–1117 (2023). https://doi.org/10.1134/S0020168523100114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523100114

Keywords:

Navigation