Skip to main content
Log in

Calcium Vapor Reduction of Niobium Oxide Compounds

  • Published:
Inorganic Materials Aims and scope

Abstract—

Calcium vapor reduction of niobium oxide compounds has been studied at temperatures from 1023 to 1123 K. The adiabatic temperature of calcium reduction of niobium pentoxide (3020 K) and the Mg4Nb2O9 niobate (2525 K) has been determined by thermodynamic modeling with the TERRA software suite. We have assessed the effects of process temperature, reduction time, and precursor powder particle size on the degree of reduction, specific surface area, and pore structure of the niobium powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Fischer, V., Störmer, H., Gerthsen, D., et al., Niobium as new material for electrolyte capacitors with nanoscale dielectric oxide layers, Proc. VII lnt. Conf. on Properties and Applications of Dielectric Materials, Nagoya, 2003, pp. 1134–1137. https://doi.org/10.1109/ICPADM.2003.1218623

  2. Pozdeev, Y., Comparison of tantalum and niobium solid electrolytic capacitors, T.I.C. Bull., 1998, no. 94, pp. 2–5.

  3. Serjak, W.A., Scheckter, L., Tripp, T.B., et al., Niobium, a new material for capacitors, Passive Compon. Ind., 2000, Nov./Dec., pp. 17–20.

  4. Zillgen, H., Stenzel, M., and Lohwasser, W., New niobium capacitors with stable electrical parameters, Act. Passive Electron. Compon., 2002, vol. 25, pp. 147–153. https://doi.org/10.1080/0882751021000001528

    Article  Google Scholar 

  5. Elyutin, A.V., Patrikeev, Yu.B., Vorob’eva, N.S., et al., RF Patent 1556420, 1994, Byull. Izobret., 1994, no. 4, p. 92.

  6. Grabis, J., Munter, R., Blagoveshchenskiy, Yu., et al., Plasmochemical process for the production of niobium and tantalum nanopowders, Proc. Est. Acad. Sci., 2012, vol. 61, no. 2, pp. 137–145. https://doi.org/10.3176/proc.2012.2.06

    Article  CAS  Google Scholar 

  7. Isaeva, N.V., Plasma-synthesized tantalum and niobium powders for production of electrolytic capacitors, Perspekt. Mater., 2008, no. 5, pp. 402–407.

  8. Kolosov, V.N., Miroshnichenko, M.N., Orlov, V.M., et al., Effect of sodiothermic reduction conditions on characteristics of niobium powders, Rasplavy, 2008, no. 5, pp. 89–94.

  9. Yoon, J.S., Lee, G.H., Hong, S.J., et al., Characteristics of niobium powder used capacitors produced by metallothermic reduction in molten salt, Curr. Nanosci., 2014, vol. 10, no. 1, pp. 131–134. https://doi.org/10.2174/1573413709666131109003032

    Article  ADS  CAS  Google Scholar 

  10. Yoon, J.S., Goto, Sh., and Kim, B.I., Characteristic variation of niobium powder produced under various reduction temperature and amount of reductant addition, Mater. Trans., 2010, vol. 51, no. 2, pp. 354–358. https://doi.org/10.2320/matertrans.M2009192

    Article  CAS  Google Scholar 

  11. Yoon, J.S., The fabrication of niobium powder by sodiothermic reduction process, Int. J. Refract. Met. Hard Mater., 2010, vol. 28, no. 2, pp. 265–269. https://doi.org/10.1016/j.ijrmhm.2009.10.009

    Article  CAS  Google Scholar 

  12. Yoon, J.S., Cho, S.W., Kim, Y.S., and Kim, B.I., The production of niobium powder and electric properties of niobium capacitors, Met. Mater. Int., 2009, vol. 15, no. 3, pp. 405–408. https://doi.org/10.1007/s12540-009-0405-0

    Article  CAS  Google Scholar 

  13. Kryzhanov, M.V., Orlov, V.M., and Sukhorukov, V.V., Thermodynamic modeling of magnesiothermic reduction of niobium and tantalum from pentoxides, Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 379–383. https://doi.org/10.1134/S107042721003002X

    Article  CAS  Google Scholar 

  14. Orlov, V.M. and Sukhorukov, V.V., Magnesium-thermal preparation of niobium powders, Russ. Metall. (Engl. Transl.), 2010, no. 3, pp. 168–173. https://doi.org/10.1134/S0036029510030043

  15. Orlov, V.M. and Kryzhanov, M.V., Magnesium reduction of niobium oxide compounds in the combustion regime, Inorg. Mater., 2019, vol. 55, no. 6, pp. 563–567. https://doi.org/10.1134/S0020168519050145

    Article  CAS  Google Scholar 

  16. Shekhter, L.N., Tripp, T.B., and Lanin, L.L., US Patent 6171363, 2001.

  17. Shekhter, L.N., Tripp, T.B., Lanin, L.L., et al., US Patent 6558447, 2003.

  18. Haas, D. and Schnitter, C., Production of capacitor grade tantalum and niobium powders using the new magnesium vapour reduction process, Proc. EMC, Dresden, 2005.

  19. Schnitter, C., Merker, U., and Michaelis, A., New niobium based materials for solid electrolyte capacitors, Proc. 22nd Capacitor and Resistor Technol. Symp., New Orleans, 2002, pp. 26–31.

  20. Kumar, T.S., Kumar, S.R., Rao, M.L., and Prakash, T.L., Preparation of niobium metal powder by two-stage magnesium vapor reduction of niobium pentoxide, J. Metall., 2013, vol. 2013, p. 629341. https://doi.org/10.1155/2013/629341

    Article  CAS  Google Scholar 

  21. Park, S.J., Hwang, S.M., Wang, J., et al., Metallic niobium powder reduced by atmospheric magnesium gas with niobium pentoxide powder, Mater. Trans., 2021, vol. 62, no. 1, pp. 34–40. https://doi.org/10.2320/matertrans.MT-M2020241

    Article  CAS  Google Scholar 

  22. Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Magnesium-vapor reduction of niobium oxide compounds, Dokl. Chem., 2015, vol. 465, no. 1, pp. 257–260. https://doi.org/10.1134/S0012500815110026

    Article  CAS  Google Scholar 

  23. Orlov, V.M. and Kryzhanov, M.V., Influence of the precursor composition and the reduction conditions on the characteristics of magnesium-thermic niobium powders, Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 7, pp. 596–601. https://doi.org/10.1134/S0036029516070107

  24. Haas, H., Bartmann, U., Komeya, T., and Sato, N., RF Patent 2 397 843, Byull. Izobret., 2010, no. 24.

  25. Okabe, T.H., Iwata, S., Imagunbai, M., et al., Production of niobium powder by preform reduction process using various fluxes and alloy reductant, ISIJ Int., 2004, vol. 44, no. 2, pp. 285–293. https://doi.org/10.2355/isijinternational.44.285

    Article  CAS  Google Scholar 

  26. Orlov, V.M. and Kiselev, E.N., Magnesium vapor reduction of niobium oxide compounds in the temperature range 540–680°C, Inorg. Mater., 2022, vol. 58, no. 12, pp. 1266–1273. https://doi.org/10.1134/S0020168522120081

    Article  CAS  Google Scholar 

  27. Orlov, V.M., Kryzhanov, M.V., Knyazeva, A.I., and Osaulenko, R.N., Niobium powders of mesoporous structure, Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 5, pp. 782–787. https://doi.org/10.1134/S2070205118040111

    Article  CAS  Google Scholar 

  28. Müller, R., Bobeth, M., Brumm, H., et al., Kinetics of nanoscale structure development during Mg-vapour reduction of tantalum oxide, Int. J. Mater. Res., 2007, vol. 98, no. 11, pp. 1138–1145. https://doi.org/10.3139/146.101567

    Article  Google Scholar 

  29. Baba, M., Ono, Y., and Suzuki, R.O., Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2, J. Phys. Chem. Solids, 2005, vol. 66, nos. 2–4, pp. 466–470. https://doi.org/10.1016/j.jpcs.2004.06.042

    Article  ADS  CAS  Google Scholar 

  30. Baba, M., Kikuchi, T., and Suzuki, R.O., Niobium powder synthesized by calciothermic reduction of niobium hydroxide for use in capacitors, J. Phys. Chem. Solids, 2015, vol. 78, pp. 101–109. https://doi.org/10.1016/j.jpcs.2014.11.014

    Article  ADS  CAS  Google Scholar 

  31. Suzuki, N., Suzuki, R.O., Natsui, S., and Kikuchi, T., Branched morphology of Nb powder particles fabricated by calciothermic reduction in CaCl2 melt, J. Phys. Chem. Solids, 2017, vol. 110, pp. 101–109. https://doi.org/10.1016/j.jpcs.2017.05.032

    Article  CAS  Google Scholar 

  32. Trusov, B.G., TERRA software suite for modeling phase and chemical equilibria in plasma chemical systems, 4 Mezhdunarodnyi simpozium po teoreticheskoi oi prikladnoi plazmokhimii (4th Int. Symp. on Theoretical and Applied Plasma Chemistry), Ivanovo, 2005. http://main.isuct.ru/files/konf/ISTAPC2005/proc/2-11.pdf. Cited April 12, 2023.

  33. Orlov, V.M. and Kryzhanov, M.V., Thermodynamic modeling of the magnesiothermic reduction of magnesium and lithium tantalates, Inorg. Mater., 2015, vol. 51, no. 6, pp. 618–622. https://doi.org/10.1134/S0020168515060114

    Article  CAS  Google Scholar 

  34. Orlov, V.M. and Kryzhanov, M.V., Production of tantalum nanopowders by magnesium reduction of tantalates, Russ. Metall. (Engl. Transl.), 2015, vol. 2915, no. 4, pp. 590–593. https://doi.org/10.1134/S0036029515070101

  35. Volkov, A.I. and Zharskii, I.M., Bol’shoi khimicheskii spravochnik (Unabridged Handbook of Chemistry), Minsk: Sovremennaya Shkola, 2005.

  36. Delheusy, M., Stierle, A., Kasper, N., et al., X-ray investigation of subsurface interstitial oxygen at Nb/oxide interfaces, Appl. Phys. Lett., 2008, vol. 92, p. 101911. https://doi.org/10.1063/1.2889474

    Article  ADS  CAS  Google Scholar 

  37. Nesmeyanov, A.N., Davlenie para khimicheskikh elementov (Vapor Pressure of Chemical Elements), Moscow: Akad. Nauk SSSR, 1961.

  38. Orlov, V.M., Kryzhanov, M.V., and Kiselev, E.N., Formation of the pore structure of tantalum and niobium powders during magnesiothermic reduction of lithium tantalate and lithium niobate, Inorg. Mater., 2020, vol. 56, no. 9, pp. 934–940. https://doi.org/10.1134/S0020168520080117

    Article  CAS  Google Scholar 

  39. Sing, K.S.W. et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984), Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kryzhanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryzhanov, M.V., Orlov, V.M. Calcium Vapor Reduction of Niobium Oxide Compounds. Inorg Mater 59, 1250–1260 (2023). https://doi.org/10.1134/S0020168523110079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523110079

Keywords:

Navigation