Skip to main content
Log in

Effect of Aluminum Substitution on the Structural, Magnetic, and Magnetothermal Properties of Yttrium Iron Garnet

  • Published:
Inorganic Materials Aims and scope

Abstract—

Y3Fe5 – xAlxO12 (х = 0, 0.5, 1.0, 1.5, 2.0) materials prepared by sol–gel synthesis have been characterized by scanning electron microscopy, X-ray diffraction, Raman and Mössbauer spectroscopies, field- and temperature-dependent saturation magnetization measurements, and magnetocaloric measurements in an ac magnetic field. We have examined the effect of aluminum concentration on the magnetic and crystal structures and magnetothermal properties of the garnet ferrite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Cruz, I.F., Freire, C., Araujo, J., Pereira, C., and Pereira, A.M., Multifunctional ferrite nanoparticles: from current trends toward the future, in Magnetic Nanostructured Materials, New York: Elsevier, 2018, ch. 3, pp. 59–115.

    Google Scholar 

  2. Bao, J., Wen, T., Samia, A.C., Khandahar, A., and Krishnan, K.M., Magnetic nanoparticles material engineering and emerging applications in lithography and biomedicine, J. Mater. Sci., 2016, vol. 51, pp. 513–553. https://doi.org/10.1007/s10853-015-9324-2

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Tishin, A., Shtil, A., Pyatakov, A., and Zverev, V., Developing antitumor hyperthermia: principles, materials and devices, recent patents on anti-cancer drug discovery, Bentham Sci., 2016, vol. 11, pp. 360–375. https://doi.org/10.2174/0929866523666160720094638

    Article  CAS  Google Scholar 

  4. Guistin, A.J., Petryk, A.A., and Cassim, S.M., Magnetic nanoparticle hyperthermia in cancer treatment, Nano LIFE, 2010, vol. 1, nos. 1–2, pp. 17–32. https://doi.org/10.1142/S1793984410000067

    Article  CAS  Google Scholar 

  5. Aono, H., Senba, R., Nishimory, T., and Naohara, T., Preparation of Y3Fe5O12 microsphere using bead-milled nanosized powder for embolization therapy application, J. Am. Ceram. Soc., 2013, vol. 96, no. 11, pp. 3483–3488. https://doi.org/10.1111/jace.12511

    Article  CAS  Google Scholar 

  6. Aono, H., Ebara, H., Senba, R., Naohara, T., Maehara, T., Hirazawa, H., and Watanabe, Y., High heat generation ability in ac magnetic field of Y3Fe5O12 powder prepared using bead milling, J. Am. Ceram. Soc., 2011, vol. 94, no. 12, pp. 4116–4119. https://doi.org/10.1016/j.jmmm.2012.02.002

    Article  CAS  Google Scholar 

  7. Aono, H., Development of nano-sized superparamagnetic ferrites having heat generation ability in an ac magnetic field for thermal coagulation therapy, J. Ceram. Soc. Jpn., 2014, vol. 122, no. 4, pp. 237–240. https://doi.org/10.2109/jcersj2.122.P4-1

    Article  Google Scholar 

  8. Grasset, F., Mornet, S., Demourgues, A., Portiera, J., Bonnet, J., Vekris, A., and Duguet, E., Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y3Fe5 – xAlxO12 (0 < x < 2) garnet submicron particles for biomedical applications, J. Magn. Magn. Mater., 2001, vol. 234, pp. 409–418. https://doi.org/10.1016/S0304-8853(01)00386-9

    Article  CAS  ADS  Google Scholar 

  9. Apostolov, A.T., Apostolova, I.N., and Wesselinowa, J.M., Application of ion-doped Y3Fe5O12 nanoparticles for self-controlled magnetic hyperthermia, Phys. Status Solidi B, 20122, vol. 259, p. 2100545. https://doi.org/10.1002/pssb.202100545

  10. Mallmann, E.J.J., Sombra, A.S.B., Goes, J.C., and Fechine, P.B.A., Yttrium iron garnet: properties and applications review, Solid State Phenom., 2013, vol. 2022, pp. 65–96. https://doi.org/10.4028/www.scientific.net/SSP.202.65

  11. Geller, S., Magnetic and crystallographic properties of substituted yttrium–iron garnet, 3Y2O3xM2O3(5−x)Fe2O3, Phys. Rev., 1958, vol. 110, no. 1, pp. 73–78. https://doi.org/10.1103/PhysRev.110.73

    Article  ADS  Google Scholar 

  12. Perrot, P., Iron–oxygen–yttrium, in Ternary Alloy Systems, Effenberg, G, Ed., 2009, vol. 11 D5, pp. 1–10. https://doi.org/10.1007/978-3-540-70890-2_23

  13. Mohaidat, Q.I., Lataifeh, M., Hamasha, K., Mahmood, S.H., Bsoul, I., and Awandeh, M., The Structural and the magnetic properties of aluminum substituted yttrium iron garnet, Mater. Res., 2018, vol. 21, no. 3, p. e20170808. https://doi.org/10.1590/1980-5373-MR-2017-0808

    Article  CAS  Google Scholar 

  14. Azadi Motlagh, Z., Mozaffari, M., Amighian, J., Lehlooh, A.F., Awawdeh, M., and Mahmood, S., Mössbauer studies of Y3Fe5 – xAlxO12 nanopowders prepared by mechanochemical method, Hyperfine Interact., 2010, vol. 198, pp. 295–302. https://doi.org/10.1007/s10751-010-0234-z

    Article  CAS  ADS  Google Scholar 

  15. Rodic, D., Mitric, M., Tellgren, R., and Rundlof, H., The cation distribution and magnetic structure of Y3Fe5 – xAlxO12, J. Magn. Magn. Mater., 2001, vol. 232, pp. 1–8. https://doi.org/10.1016/S0304-8853(01)00211-6

    Article  CAS  ADS  Google Scholar 

  16. Mahour, L.N., Manjunatha, M., Choudhary, H.K., Kumar, R., Anupama, A.V., Damle, R., Ramesh, K.P., and Sahoo, B., Structural and magnetic properties of Al-doped yttrium iron garnet ceramics: 57Fe internal field NMR and Mössbauer spectroscopy study, J. Alloys Compd., 2019, vol. 773, pp. 612–622. https://doi.org/10.1016/j.jallcom.2018.09.213

    Article  CAS  Google Scholar 

  17. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, no. 2, pp. 65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  ADS  Google Scholar 

  18. Matsnev, M.E. and Rusakov, V.S., SpectrRelax: an application for Mössbauer spectra modeling and fitting, AIP Conf. Proc., 2012, vol. 1489, pp. 178–185.

    Article  CAS  ADS  Google Scholar 

  19. Barton-Lopez, J.F., Hernández-Cruz, L.E., Sánchez De-Jesús, F., Bolarín-Miró, A., et al., Vibrational and magnetic properties of YIG ferrite powders obtained by the Pechini method, J. Phys.: Conf. Ser., 2019, vol. 1221, p. 0123017. https://doi.org/10.1088/1742-6596/1221/1/012017

    Article  CAS  Google Scholar 

  20. Nagrare, B.S., Kekade, S.S., Thombare, B., and Reddy, R.V., Hyperfine interaction, Raman and magnetic study of YFeO3 nanocrystals, Solid State Commun., 2018, vol. 280, pp. 32–38. https://doi.org/10.1016/j.ssc.2018.06.004

    Article  CAS  ADS  Google Scholar 

  21. Winkler, H., Eisberg, R., Alp, E., Rüffer, R., Gerdau, E., Lauer, S., Trautwein, A.X., Grodzicki, M., and Vera, A., Pure nuclear reflexes and combined hyperfine interactions in YIG, Z. Phys. B: Condens. Matter, 1983, vol. 49, pp. 331–341. https://doi.org/10.1007/BF01301594

    Article  CAS  ADS  Google Scholar 

  22. Sawatzky, G.A., Van Der Woude, F., and Morrish, A.H., Recoilless-fraction ratios for octahedral and tetrahedral sites of a spinel and a garnet, Phys. Rev., 1969, vol. 183, pp. 383–386. https://doi.org/10.1103/PhysRev.183.383

    Article  CAS  ADS  Google Scholar 

  23. Kiseleva, T., Abbas, R., Martinson, K., Komlev, A., Lazareva, E., Tyapkin, P., et al., Size-dependent structural, magnetic and magnetothermal properties of Y3Fe5O12 fine particles obtained by SCS, Nanomaterials, 2022, vol. 12, no. 16, pp. 2733–2748. https://doi.org/10.3390/nano12162733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krupička, S., Physik der Ferrite und der verwandten magnetischen Oxide, Prague: Vieweg+Teubner, 1973.

  25. Sanchex, R.D., Rivas, J., Vaqueiro, P., López-Quintela, M.A., and Caeiro, D., Particle size effects on magnetic properties of yttrium iron garnets prepared by sol–gel method, J. Magn. Magn. Mater., 2002, vol. 247, pp. 92–98. https://doi.org/10.1016/S0304-8853(02)00170-1

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the technical support through the Development of Moscow State University Program.

Funding

This work was supported by the Russian Foundation for Basic Research, Russia–Mongolia project no. 19-52-44003 Mong_t.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Kiseleva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, T.Y., Lazareva, E.V., Uyanga, E. et al. Effect of Aluminum Substitution on the Structural, Magnetic, and Magnetothermal Properties of Yttrium Iron Garnet. Inorg Mater 59, 1220–1229 (2023). https://doi.org/10.1134/S0020168523110067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523110067

Keywords:

Navigation