Skip to main content
Log in

Atomic Structure and Growth Relationships of TaSi\(_{n}^{ - }\) (n = 12–17) Monoanionic Silicon–Tantalum Clusters

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents results of density functional calculations of the atomic structure and electronic spectrum of \({\text{TaSi}}_{n}^{ - }\) (n = 12–17) clusters with the use of three distinct functionals. We analyze how the choice of the functional influences cluster structure optimization results and compare calculated electronic spectra of the most stable cluster isomers with measured photoelectron spectra, which makes it possible to assess the adequacy of the calculation method and identify the structure of the clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Dong, C., Yang, J., and Lu, J., Structural and electronic properties of nanosize semiconductor \({\text{HfSi}}_{n}^{{0/ - /2 - }}\) (n = 6–16) material: a double-hybrid density functional theory investigation, J. Mol. Model., 2020, vol. 26, p. 85. https://doi.org/10.1007/s00894-020-04352-110.1007/s00894-020-04352-1

    Article  CAS  PubMed  Google Scholar 

  2. Yang, J., Wang, J., and Hao, Y., Europium-doped silicon clusters EuSin (n = 3–11) and their anions: structures, thermochemistry, electron affinities, and magnetic moments, Theor. Chem. Acc., 2015, vol. 134, p. 81. https://doi.org/10.1007/s00214-015-1684-9

    Article  CAS  Google Scholar 

  3. Liu, Y., Yang, J., and Cheng, L., Structural stability and evolution of scandium-doped silicon clusters: evolution of linked to encapsulated structures and its influence on the prediction of electron affinities for ScSin (n = 4–16) clusters, Inorg. Chem., 2018, vol. 57, no. 20, pp. 12934–12940. https://doi.org/10.1021/acs.inorgchem.8b02159

    Article  CAS  PubMed  Google Scholar 

  4. Xie, X., Hao, D., and Yang, J., Ytterbium doped silicon clusters YbSin (n = 4–10) and their anions: structures, thermochemistry, and electron affinities, Chem. Phys., 2015, vol. 461, pp. 11–19. https://doi.org/10.1016/j.chemphys.2015.08.024

    Article  CAS  Google Scholar 

  5. Dong, X., Yang, Z., and Yang, J., Study on the growth behavior and photoelectron spectroscopy of neodymium-doped silicon nanoclusters NdSi\(_{n}^{{0/ - }}\) (n = 8–20) with a double-hybrid density functional theory, J. Mol. Model., 2021, vol. 27, p. 27. https://doi.org/10.1007/s00894-020-04637-510.1007/s00894-020-04637-5

    Article  CAS  Google Scholar 

  6. Jena, P. and Sun, Q., Super atomic clusters: design rules and potential for building blocks of materials, Chem. Rev., 2018, vol. 118, no. 11, pp. 5755–5870. https://doi.org/10.1021/acs.chemrev.7b00524

    Article  CAS  PubMed  Google Scholar 

  7. Borshch, N. and Kurganskii, S., Geometric structure, electron-energy spectrum, and growth of anionic scandium-silicon clusters ScSi\(_{n}^{ - }\) (n = 6–20), J. Appl. Phys., 2014, vol. 116, no. 12 P, p. 124302. https://doi.org/10.1063/1.489652810.1063/1.4896528

  8. Borshch, N.A. and Kurganskii, S.I., Anionic germanium–niobium clusters: atomic structure, mechanisms of cluster formation, and electronic spectra, Russ. J. Phys. Chem. A, 2018, vol. 92, no. 9, pp. 1720–1726. https://doi.org/10.1134/S0036024418090078

    Article  CAS  Google Scholar 

  9. Borshch, N.A. and Kurganskii, S.I., Spatial structure, electron energy spectrum, and growth of HfSi\(_{n}^{ - }\) clusters (n = 6–20), Russ. J. Inorg. Chem., 2018, vol. 63, no. 8, pp. 1062–1068. https://doi.org/10.1134/S003602361808003X10.1134/S003602361808003X

    Article  CAS  Google Scholar 

  10. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, pp. 5648–5652. https://doi.org/10.1063/1.464913

    Article  ADS  CAS  Google Scholar 

  11. Lee, C., Yang, W., and Parr, R.G., Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, vol. 37, pp. 785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  CAS  Google Scholar 

  12. Vosko, S.H., Wilk, L., and Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 1980, vol. 58, pp. 1200–1211. https://doi.org/10.1139/p80-159

    Article  ADS  CAS  Google Scholar 

  13. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, pp. 11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  14. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, pp. 5648–5652. https://doi.org/10.1063/1.464913

    Article  ADS  CAS  Google Scholar 

  15. Perdew, J.P. and Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, vol. 45, pp. 13244–13249. https://doi.org/10.1103/PhysRevB.45.13244

    Article  ADS  CAS  Google Scholar 

  16. Perdew, J.P., Ernzenhof, M., and Burke, K., Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys., 1996, vol. 105, pp. 9982–9985. https://doi.org/10.1063/1.472933

    Article  ADS  CAS  Google Scholar 

  17. Adamo, C. and Barone, V., Toward reliable density functional methods without adjustable parameters: the PBE0 model, J. Chem. Phys., 1996, vol. 110, pp. 6158–6170. https://doi.org/10.1063/1.478522

    Article  ADS  Google Scholar 

  18. Dobbs, K.D. and Hehre, W.J., Molecular orbital theory of the properties of inorganic and organometallic compounds: 5. Extended basis sets for first-row transition metals, J. Comput. Chem., 1987, vol. 8, pp. 861–879. https://doi.org/10.1002/jcc.540080614

    Article  CAS  Google Scholar 

  19. Gordon, M.S., Binkley, J.S., Pople, J.A., Pietro, W.J., and Hehre, W.J., Self-consistent molecular-orbital methods: 22. Small split-valence basis sets for second-row elements, J. Am. Chem. Soc., 1982, vol. 104, pp. 2797–2803. https://doi.org/10.1021/ja00374a017

    Article  CAS  Google Scholar 

  20. Rassolov, V.A., Pople, J.A., Ratner, M.A., and Windus, T.L., 6-31G* basis set for atoms K through Zn, J. Chem. Phys., 1998, vol. 109, pp. 1223–1229. https://doi.org/10.1063/1.476673

    Article  ADS  CAS  Google Scholar 

  21. Martins, L.S.C., Jorge, F.E., and Machado, S.F., All-electron segmented contraction basis sets of triple zeta valence quality for the fifth-row elements, Mol. Phys., 2015, vol. 113, pp. 3578–3586. https://doi.org/10.1080/00268976.2015.1040095

    Article  ADS  CAS  Google Scholar 

  22. Pritchard, B.P., Altarawy, D., Didier, B., Gibson, T.D., and Windus, T.L., New basis set exchange: an open, up-to-date resource for the molecular sciences community, J. Chem. Inf. Model., 2019, vol. 59, pp. 4814–4820. https://doi.org/10.1021/acs.jcim.9b00725

    Article  CAS  PubMed  Google Scholar 

  23. Feller, D., The role of databases in support of computational chemistry calculations, J. Comput. Chem., 1996, vol. 17, pp. 1571–1586. https://doi.org/10.1002/(SICI)1096-987X(199610)17:13%3C1571::AID-JCC9%3E3.0.CO;2-P

    Article  CAS  Google Scholar 

  24. Schuchardt, K.L., Didier, B.T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., and Windus, T.L., Basis set exchange: a community database for computational sciences, J. Chem. Inf. Model., 2007, vol. 47, pp. 1045–1052. https://doi.org/10.1021/ci600510j

    Article  CAS  PubMed  Google Scholar 

  25. Koyasu, K., Atobe, J., Furuse, S., and Nakajima, A., Anion photoelectron spectroscopy of transition metal– and lanthanide metal–silicon clusters: MSi\(_{n}^{ - }\) (n = 6–20), J. Chem. Phys., 2008, vol. 129, p. 214301. https://doi.org/10.1063/1.302308010.1063/1.3023080

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Frisch, M.J. et al., Gaussian 09, Revision D.01, Wallingford: Gaussian Inc., 2013.

    Google Scholar 

  27. Wade, K., The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds, J. Chem. Soc. D., 1971, pp. 792–793. https://doi.org/10.1039/C29710000792

  28. Mingos, D.A., A general theory for cluster and ring compounds of the main group and transition elements, Nat. Phys. Sci., 1972, vol. 236, pp. 99–102. https://doi.org/10.1038/physci236099a0

    Article  ADS  CAS  Google Scholar 

  29. Lu, S.-J., Xu, H.-G., Xu, X.-L., and Zheng, W.-J., Structural evolution and electronic properties of TaSi\(_{n}^{{^{{-/0}}}}\) (n = 2–15) clusters: size-selected anion photoelectron spectroscopy and theoretical calculations, J. Chem. Phys. A, 2020, vol. 124, no. 47, pp. 9818–9831. https://doi.org/10.1021/acs.jpca.0c09209

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In our calculations, we used computational resources at the Supercomputer Center, Voronezh State University.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, agreement no. 075-15-2021-1351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Borshch.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borshch, N.A., Pereslavtseva, N.S. & Kurganskii, S.I. Atomic Structure and Growth Relationships of TaSi\(_{n}^{ - }\) (n = 12–17) Monoanionic Silicon–Tantalum Clusters. Inorg Mater 59, 1194–1203 (2023). https://doi.org/10.1134/S002016852311002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852311002X

Keywords:

Navigation