Skip to main content
Log in

Synergistic Effects of Hydrophilic-Hydrophobic Porous Structures for Enhancing Nucleate Pool Boiling Heat Transfer

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Boiling is an efficient mode of heat transfer and has important applications that use high heat flux systems. However, a single wettable boiling surface is not appropriate for the dual requirements of low superheat for nucleation and high critical heat flux. Here, we present a hydrophilic composite and a functional hydrophilic-hydrophobic partitioned porous structure that significantly improves boiling heat transfer performance via a double-sintering process. The superheat requirement for the onset of nucleate boiling decreased from 2°C on the single hydrophilic porous structure to 1°C on the hydrophilic-hydrophobic porous structure, the critical heat flux was reduced by 3.3% in the early stages of boiling (below 250 kW/m2), the heat transfer efficiency increased by 20%, and the heat transfer was comparable to that of the hydrophilic porous structure. Bubble dynamics were observed using a high-speed camera. The results demonstrate that the bubble nucleation sites mainly occur in the hydrophobic region and this is attributed to a decrease in the energy barrier for nucleation. The bubble dynamic statistics revealed that the product of the diameter of the bubble and the bubble escape frequency are similar for composite surfaces and hydrophilic porous surfaces, which is consistent with Zuber’s conclusion. The synergistic effect of the hydrophilic-hydrophobic partitioned porous structure can promote nucleation in the hydrophobic region and retain capillary suction for liquid reflux in the hydrophilic region to enhance boiling heat transfer. This work enables the large-scale deployment of heat exchanger surface processing technology because of its low cost, availability, and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Wu, J.M. and Zhao, J., A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application, Prog. Nucl. Energy, 2013, vol. 66, pp. 13–24. https://doi.org/10.1016/j.pnucene.2013.03.009

    Article  CAS  Google Scholar 

  2. Hosseinizadeh, S.F., Tan, F.L., and Moosania, S.M., Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins, Appl. Therm. Eng., 2011, vol. 31, nos. 17–18, pp. 3827–3838. https://doi.org/10.1016/j.applthermaleng.2011.07.031

  3. Bhavnani, S., Narayanan, V., Qu, W., Jensen, M., Kandlikar, S.C., Kim, J., and Thome, J., Boiling augmentation with micro/nanostructured surfaces: Current status and research outlook, Nanoscale Microscale Thermophys. Eng., 2014, vol. 18, no. 3, pp. 197–222. https://doi.org/10.1080/15567265.2014.923074

    Article  ADS  Google Scholar 

  4. Yeh, L.T., Review of heat transfer technologies in electronic equipment, J. Electron. Packag., 2007, vol. 117, no. 4, pp. 333–339. https://doi.org/10.1115/1.2792113

    Article  Google Scholar 

  5. Cho, H.J., Mizerak, J.P., and Wang, E.N., Turning bubbles on and off during boiling using charged surfactants, Nat. Commun., 2015, vol. 6, no. 1, article no. 8599. https://doi.org/10.1038/ncomms9599

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Ahn, H.S., Sathyamurthi, V., and Banerjee, D., Pool boiling experiments on a nano-structured surface, in IEEE Trans. Compon., Packag., Manuf. Technol., 2009, vol. 32, no. 1, pp. 156–165. https://doi.org/10.1109/TCAPT.2009.2013980

  7. Yamamoto, T. and Matsumoto, M., Initial stage of nucleate boiling: Molecular dynamics investigation, J. Therm. Sci. Technol.,2012, vol. 7, no. 1, pp. 334–349. https://doi.org/10.1299/jtst.7.334

    Article  CAS  Google Scholar 

  8. Patil, C.M. and Kandlikar, S.G., Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling, Heat Transfer Eng., 2014, vol. 35, no. 10, pp. 887–902. https://doi.org/10.1080/01457632.2014.862141

    Article  ADS  CAS  Google Scholar 

  9. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Review of boiling heat transfer enhancement on micro/nanostructured surfaces, Exp. Therm. Fluid Sci., 2015, vol. 66, 173–196. https://doi.org/10.1016/j.expthermflusci.2015.03.023

    Article  CAS  Google Scholar 

  10. Tran, N.G. and Chun, D.-M., Green manufacturing of extreme wettability contrast surfaces with superhydrophilic and superhydrophobic patterns on aluminum, J. Mater. Process. Technol., 2021, vol. 297, article no. 117245. https://doi.org/10.1016/j.jmatprotec.2021.117245

    Article  CAS  Google Scholar 

  11. Strąk, K. and Piasecka, M., The applicability of heat transfer correlations to flows in minichannels and new correlation for subcooled flow boiling. Int. J. Heat Mass Transfer, 2020, vol. 158, article no. 119933. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119933

    Article  CAS  Google Scholar 

  12. Parker, J.L. and El-Genk, M.S., Effect of surface orientation on nucleate boiling of FC-72 on porous graphite, J. Heat Transfer, 2006, vol. 128, no. 11, pp. 1159–1175. https://doi.org/10.1115/1.2352783

    Article  CAS  Google Scholar 

  13. Ispir, A.C. and Onbasioglu, S.U., Experimental investigation of the effect of dimensions on nucleate boiling heat transfer in straight tunnel-structured boiling surfaces, J. Enhanced Heat Transfer, 2020, vol. 27, no. 2, pp. 101–122. https://doi.org/10.1615/JEnhHeatTransf.2019030310

    Article  CAS  Google Scholar 

  14. Chien, L.-H. and Chang, C.C., Enhancement of pool boiling on structured surfaces using HFC-4310 and water, J. Enhanced Heat Transfer, 2004, vol. 11, no. 1, pp. 23–42. https://doi.org/10.1615/JEnhHeatTransf.v11.i1.30

    Article  ADS  CAS  Google Scholar 

  15. Zhou, R., Ji, X., Kong, Q., and Dai, C., Research progress of surface wettability affecting boiling heat transfer in a pool, Therm. Power Eng., 2019, vol. 34, no. 02, pp. 1–8.

    Google Scholar 

  16. Suroto, B.J., Tashiro, M., Hirabayashi, S., Hidaka, S., Kohno, M., and Takata, Y., Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface, J. Therm. Sci. Technol., 2013, vol. 8, no. 1, pp. 294–308. https://doi.org/10.1299/jtst.8.294

    Article  CAS  Google Scholar 

  17. Li, W.X., Li, Q., Yu, Y., and Wen, Z.X., Enhancement of nucleate boiling by combining the effects of surface structure and mixed wettability: A lattice Boltzmann study, Appl. Therm. Eng., 2020, vol. 180, article no. 115849. https://doi.org/10.1016/j.applthermaleng.2020.115849

    Article  Google Scholar 

  18. Wu, N., Zeng, L., Fu, T., Wang, Z., and Lu, C., Molecular dynamics study of rapid boiling of thin liquid water film on smooth copper surface under different wettability conditions, Int. J. Heat Mass Transfer, 2020, vol. 147, article no. 118905. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118905

    Article  CAS  Google Scholar 

  19. Chen, H., Huang, L., and Gong, Y., Research progress on the influence of porous structure and surface infiltration on boiling heat transfer, Chem. Ind. Eng. Prog., 2017, vol. 36, no. 08, pp. 2798–2808. Chen, H., Huang, L., and Gong, Y., Progress on boiling heat transfer from porous structure and surface wettability, Chem. Ind. Eng. Prog., 2017, vol. 36, no. 08, pp. 2798–2808. https://doi.org/10.16085/j.issn.1000-6613.2016-2350

    Article  Google Scholar 

  20. Nishimura, Y., Okajima, J., Oouchi, T., and Komiya, A., Evaluation of forced convective boiling heat transfer with layered parallel microchannels, J. Therm. Sci. Technol., 2020, vol. 15, no. 1, article no. JTST0006, pp. 1–13. https://doi.org/10.1299/jtst.2020jtst0006

  21. Myo, W.P.P., Momoki, S., and Yamaguchi, T., Modification on prediction method of heat transfer coefficient from a vertical-finite-length cylinder in saturated film boiling to discuss local heat transfer performance near the lower corner, J. Therm. Sci. Technol., 2018, vol. 13, no. 1, article no. JTST0006, pp. 1–12. https://doi.org/10.1299/jtst.2018jtst0006

  22. Li, Y., Zhang, K.L., Tao, H.K., and Lv, W.J., Experimental study on pool boiling heat transfer characteristics of porous surface tube, Appl. Mech. Mater., 2012, vol. 192, pp. 24–28. https://doi.org/10.4028/www.scientific.net/amm.192.24

  23. Li, C.H., Li, T., Hodgins, P., Hunter, C.N., Voevodin, A.A., Jones, J.G., and Peterson, G.P., Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 15–16, pp. 3146–3155. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.062

  24. Vemuri, S. and Kim, K.J., Pool boiling of saturated FC-72 on nano-porous surface, Int. Commun. Heat Mass Transfer, 2004, vol. 32, nos. 1–2, pp. 27–31. https://doi.org/10.1016/j.icheatmasstransfer.2004.03.020

  25. Kuznetsov, D.V., Pavlenko, A.N., Chernyavskiy, A.N., and Radyuk, A.A., Study of the effect of three-dimensional capillary-porous coatings with various microstructural parameters on heat transfer and critical heat flux at pool boiling of nitrogen, J. Phys.: Conf. Ser., 2020, vol. 1677, no. 1, article no. 012089, pp. 1–8. https://doi.org/10.1088/1742-6596/1677/1/012089

  26. Bourdon, B., Marco, P.D., Rioboo, R., Marengo, M., and Coninck, J.D., Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces, Int. Commun. Heat Mass Transfer, 2013, vol. 45, pp. 11–15. https://doi.org/10.1016/j.icheatmasstransfer.2013.04.009

    Article  CAS  Google Scholar 

  27. Teodori, E., Palma, T., Valente, T., Moita, A.S., and Moreira, A.L.N., Bubble dynamics and heat transfer for pool boiling on hydrophilic, superhydrophobic and biphilic surfaces, J. Phys.: Conf. Ser., 2016, vol. 745, no. 3, article no. 032132, pp. 1–8. https://doi.org/10.1088/1742-6596/745/3/032132

  28. Gunarasan, J.P.C. and Ravindran, P., Significance of chemical engineering in surface wettability tuning and its boiling hydrodynamics: A boiling heat transfer study, Ind. Eng. Chem. Res., 2020, vol. 59, no. 10, pp. 4210–4218. https://doi.org/10.1021/acs.iecr.9b06094

    Article  CAS  Google Scholar 

  29. Jo, H., Ahn, H.S., Kang, S.H., and Kim, M.H., A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 25–26, pp. 5643–5652. https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.001

  30. Zhang, D., Xu, H., Chen, Y., Wang, L., Qu, J., Wu, M., and Zhou, Z., Boiling heat transfer performance of parallel porous microchannels, Energies, 2020, vol. 13, no. 11, article no. 2970, pp. 1–17. https://doi.org/10.3390/en13112970

  31. Bai, P., Tang, T., and Tang, B., Enhanced flow boiling in parallel microchannels with metallic porous coating, Appl. Therm. Eng., 2013, vol. 58, nos. 1–2, pp. 291–297. https://doi.org/10.1016/j.applthermaleng.2013.04.067

  32. Deng, D., Feng, J., Huang, Q., Tang, Y., and Lian, Y., Pool boiling heat transfer of porous structures with reentrant cavities, Int. J. Heat Mass Transfer, 2016, vol. 99, pp. 556–568. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.015

    Article  CAS  Google Scholar 

  33. Conke, D and Kandlikar, S.G., Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels, J. Heat Transfer, 2011, vol. 133, no. 5, article no. FEDSM-ICNMM2010-31147, pp. 163–172., https://doi.org/10.1115/FEDSM-ICNMM2010-31147

  34. Phan, H.T., Caney, N., Marty, P., Colasson, S., and Gavillet, J., Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism, Int. J. Heat Mass Transfer, 2009, vol. 52, nos. 23–24, pp. 5459–5471. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032

  35. Carey, V.P., Liquid-Vapor Phase-Change Phenomena, London: Taylor Francis, 1992.

    Google Scholar 

  36. Zuber, N., Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, Int. J. Heat Mass Transfer, 1963, vol. 6, no. 1, pp. 53–78. https://doi.org/10.1016/0017-9310(63)90029-2

    Article  CAS  Google Scholar 

  37. Wang, J., Lang, Z., Yu, G., and Wu, G., Pool boiling heat transfer and prediction of CuO/H2O nanofluids, J. Chem. Ind. Eng., 2018, vol. 69, no. 07, pp. 2944–2955. https://doi.org/10.11949/j.issn.0438-1157.20171621

    Article  CAS  Google Scholar 

  38. Yabuki, T. and Nakabeppu, O., Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor, Int. J. Heat Mass Transfer, 2014, vol. 76, pp. 286–297. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.012

    Article  Google Scholar 

  39. Yabuki, T. and Nakabeppu, O., Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor. Int. J. Heat Mass Transfer, 2014, vol. 76, pp. 286–297. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.012

    Article  Google Scholar 

  40. Yu, Y., Wang, Y., Qi, B., and Wei, J., Study on bubble distribution and enhanced heat transfer on Sierpinski hydrophilic/hydrophobic pattern surface, J. Xi 'an Jiaotong Univ. (Social Science Edition), 2019, vol. 53, no. 05, pp. 100–108.

  41. Kong, X., Wei, J., and Zhang, Y., Microrefinement study on heat transfer and boiling of hydrophilic and hydrophobic surfaces, J. Eng. Thermophys., 2018, vol. 39, no. 06, pp. 1373–1378.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant no. 21868022), the science and technology planning project of Inner Mongolia (Grant no. 2021GG0043), and the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant no. 2022LHMS02002).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowen Zhang, Yingjie Kang, Zhongmin Lang or Wugang Qiang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Kang, Y., Lang, Z. et al. Synergistic Effects of Hydrophilic-Hydrophobic Porous Structures for Enhancing Nucleate Pool Boiling Heat Transfer. Theor Found Chem Eng 57, 1431–1443 (2023). https://doi.org/10.1134/S0040579523060106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523060106

Keywords:

Navigation