Skip to main content
Log in

Electrochemical Sulfur Removal at Controlled and Uncontrolled pHs with an Iron Anode

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this study, sulfide removal was carried out in the Electrocoagulation process under controlled and uncontrolled pH conditions. Under optimum conditions, electrocoagulation took place in less than 40 minutes at uncontrolled pH and less than 30 minutes at controlled pH to reduce the sulfite concentration of the effluent below 0.5 mg/L. The reaction rate constant and iron-sulfide molar ratio for sulfide removal were 14.09 × 10–2 min–1 and 0.97 mol/mol, respectively; under uncontrolled pH conditions, they were 22.88 × 10–2 and 0.97 mol/mol at controlled pH. The mg sulfide removed per g Fe was calculated as 654.0 mg S2–/g Fe at uncontrolled pH and 508.46 mg S2–/g Fe at controlled pH. The operating costs for uncontrolled and controlled pH conditions were also calculated as 2.063 $/m3 (0.747 $/kg S) and 0.842 $/m3 (0.628 $/kg S), respectively. Controlled pH conditions were important in sulfide removal by the Electrocoagulation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Murugananthan, M., Raju, G.B., and Prabhakar, S., Removal of sulfide, sulfate and sulfite ions by electro coagulation, J. Hazard. Mater., 2004, vol. 109, nos. 1–3, pp. 37–44. https://doi.org/10.1016/j.jhazmat.2003.12.009

  2. Luthy, R.G., Treatment of coal coking and coal gasification wastewaters, J.–Water Pollut. Control Fed., 1981, vol. 53, no. 3, part 1, pp. 325–339. http://www. jstor.org/stable/25041082. Cited November 19, 2023.

  3. Henshaw, P.F. and Zhu, W., Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor, Water Res., 2001, vol. 35, no. 15, pp. 3605–3610. https://doi.org/10.1016/S0043-1354(01)00082-3

    Article  PubMed  CAS  Google Scholar 

  4. Lewis, R.J. and Copley, G.B., Chronic low-level hydrogen sulfide exposure and potential effects on human health: A review of the epidemiological evidence, Crit. Rev. Toxicol., 2015, vol. 45, no. 2, pp. 93–123. https://doi.org/10.3109/10408444.2014.971943

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad, F., Maitra, S., and Ahmad. N., Treatment of sulfidic wastewater using iron salts, Arabian J. Sci. Eng., 2017, vol. 42, pp. 1466–1462. https://doi.org/10.1007/s13369-016-2315-z

    Article  CAS  Google Scholar 

  6. Huang, Y., Liu, Z., Guo, Y., Lin, Q., Liao, X., and Qi, H., A comparative study on sulfide removal by HClO and KMnO4 in drinking water, Environ. Sci.: Water Res. Technol., 2020, vol. 6, no. 10, pp. 2871–2880. https://doi.org/10.1039/d0ew00629g

    Article  CAS  Google Scholar 

  7. Hariz, I.B., Halleb, A., Adhoum, N., and Monser L., Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation, Sep. Purif. Technol., 2013, vol. 107, pp. 150–157. https://doi.org/10.1016/j.seppur.2013.01.051

    Article  CAS  Google Scholar 

  8. Dermentzis, K.I., Removal of sulfide and COD from a crude oil wastewater model by aluminum and iron electrocoagulation, J. Eng. Sci. Technol. Rev., 2016, vol. 9, no. 1, pp. 13-16.

    Article  CAS  Google Scholar 

  9. Midha, V. and Dey, A., Biological treatment of tannery wastewater for sulfide removal, Int. J. Chem. Sci., 2008, vol. 6, no. 2, pp. 472–486.

    CAS  Google Scholar 

  10. Lens, P.N.L., Visser, A., Jansen, A.J.H., Hulshoff Pol, L.W., and Lettinga, G., Biotechnological treatment of organic sulphate-rich wastewaters, Crit. Rev. Environ. Science Technol., 1998, vol. 28, pp. 41–88.

    Article  CAS  Google Scholar 

  11. Pikaar, I., Rozendal, R.A., Yuan, Z., Keller, J., and Rabaey, K., Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities, Water Res., 2011, vol. 45, no. 6, pp. 2281–2289. https://doi.org/10.1016/j.watres.2010.12.025

    Article  PubMed  CAS  Google Scholar 

  12. Baquerizo, G., Chaneac, A., Arellano-Garcıa, L., González-Sánchez, A., and Revah, S., Biological removal of high loads of thiosulfate using a trickling filter under alkaline conditions, Mine Water Environ., 2013, vol. 32, no. 4, pp. 278–284. https://doi.org/10.1007/s10230-013-0239-3

    Article  ADS  CAS  Google Scholar 

  13. Altaş, L. and Büyükgüngör, H., Sulfide removal in petroleum refinery wastewater by chemical precipitation, J. Hazard. Mater., 2008, vol. 153, nos. 1–2, pp. 462–469. https://doi.org/10.1016/j.jhazmat.2007.08.076

  14. Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon N., and Verstraete, W., Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review, Water Res., 2008, vol. 42, nos. 1–2, pp. 1–12. https://doi.org/10.1016/j.watres.2007.07.013

  15. Huang, C., Li, Z.-L., Chen, F., Liu, Q., Zhao, Y.-K., Gao, L.-F., Chen, C., Zhou, J.-Z., and Wang A.-J., Efficient regulation of elemental sulfur recovery through optimizing working height of upflow anaerobic sludge blanket reactor during denitrifying sulfide removal process, Bioresour. Technol., 2016, vol. 200, pp. 1019–1023. https://doi.org/10.1016/j.biortech.2015.09.109

    Article  PubMed  CAS  Google Scholar 

  16. Szpyrkowicz, L., Kaul, S.N., Neti, R.N., and Satyanarayan, S., Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater, Water Res., 2005, vol. 39, no. 8, pp. 1601–1613. https://doi.org/10.1016/j.watres.2005.01.016

    Article  PubMed  CAS  Google Scholar 

  17. Xiao, Y., Wang, S., Wu, D., and Yuan, Q., Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions, J. Hazard. Mater., 2008, vol. 153, no. 3, pp. 1193–1200. https://doi.org/10.1016/j.jhazmat.2007.09.081

    Article  PubMed  CAS  Google Scholar 

  18. Zhou, Y., Xing, X.-H., Liu, Z., Cui, L., Yu, A., Feng, Q., and Yang, H., Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater, Chemosphere, 2008, vol. 72, no. 2, pp. 290–298. https://doi.org/10.1016/j.chemosphere.2008.02.028

    Article  ADS  PubMed  CAS  Google Scholar 

  19. Cañizares, P., Martinez, F., Jiménez, C., Sáez, C., and Rodrigo, M.A., Coagulation and electrocoagulation of oil-in-water emulsions, J. Hazard. Mater., 2008, vol. 151, no. 1, pp. 44–51. https://doi.org/10.1016/j.jhazmat.2007.05.043

    Article  PubMed  CAS  Google Scholar 

  20. Lin, H.-W., Kustermans, C., Vaiopoulou, E., Prévoteau, A., Rabaey, K., Yuan, Z., and Pikaar, I., Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers, Water Res., 2017, vol. 118, pp. 114–120. https://doi.org/10.1016/j.watres.2017.02.069

    Article  PubMed  CAS  Google Scholar 

  21. Kobya, M., Can, O.T., and Bayramoglu, M., Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes, J. Hazard. Mater., 2003, vol. 100, nos. 1–3, pp. 163–178. https://doi.org/10.1016/S0304-3894(03)00102-X

  22. Standard Methods for the Examination of Water and Wastewater, Washington, DC: APHA, 1998.

  23. Noubactep, C. and Schöner, A., Metallic iron for environmental remediation: Learning from electrocoagulation, J. Hazard. Mater., 2010, vol. 175, nos. 1–3, pp. 1075–1080. https://doi.org/10.1016/j.jhazmat.2009.09.152

  24. Firer, D., Friedler, E., and Lahav, O., Control of sulfide in sewer systems by dosage of iron salts: Comparison between theoretical and experimental results, and practical implications, Sci. Total Environ., 2008, vol. 392, no. 1, pp. 145–156. https://doi.org/10.1016/j.scitotenv.2007.11.008

    Article  ADS  PubMed  CAS  Google Scholar 

  25. Yang, W., Vollertsen, J., and Hvitved-Jacobsen, T., Anoxic sulfide oxidation in wastewater of sewer networks, Water Sci. Technol., 2005, vol. 52, no. 3, pp. 191–199.

    Article  PubMed  CAS  Google Scholar 

  26. Salehin, S., Kulandaivelu, J.K., Rebosura, M., Jr., van der Kolk, O., Keller, J., Doederer, K., Gernjak, W., Donose, B.C., Yuan, Z., and Pikaar, I., Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removal, Water Res., 2020, vol. 184, article no. 116179. https://doi.org/10.1016/j.watres.2020.116179

    Article  PubMed  CAS  Google Scholar 

  27. Sheng, Y., Sun, Q., Sun, R., Burke, I.T., and Mortimer, R.J.G., Use of bauxite residue (red mud) as a low cost sorbent for sulfide removal in polluted water remediation, Water Sci. Technol., 2016, vol. 74, no. 2, pp. 359–366. https://doi.org/10.2166/wst.2016.211

    Article  PubMed  CAS  Google Scholar 

  28. Omwene, P.I. and Kobya, M., Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study, Process Saf. Environ. Prot., 2018, vol. 116, pp. 34–51. https://doi.org/10.1016/j.psep.2018.01.005

    Article  CAS  Google Scholar 

  29. Aliasghari, S., Fatehbasharzad, P., Bazargan, A., and Movahed, S.M.A., Electrocoagulation for the treatment of highly sulfidic spent caustic: Parametric study followed by statistical optimization, Int. J. Environ. Sci. Technol., 2021, vol. 18, no. 4, pp. 939–948. https://doi.org/10.1007/s13762-020-02890-y

  30. Apaydın, O., Kurt, U., and Gonüllü, M.T., An investigation on the treatment of tannery wastewater by electrocoagulation, Global NEST J., 2009, vol. 11, no. 4, pp. 546–555. https://doi.org/10.30955/gnj.000547

    Article  Google Scholar 

  31. Isarain-Chávez, E., de la Rosa, C., Godínez, L.A., Brillas, E., and Peralta-Hernández, J.M., Comparative study of electrochemical water treatment processes for a tannery wastewater effluent, J. Electroanal. Chem., 2014, vol. 713, pp. 62–69. https://doi.org/10.1016/j.jelechem.2013.11.016

    Article  CAS  Google Scholar 

  32. Lu, Z., Tang, J., Mendoza, M.L., Chang, D., Cai, L., and Zhang, L., Electrochemical decrease of sulfide in sewage by pulsed power supply, J. Electroanal. Chem., 2015, vol. 745, pp. 37–43. https://doi.org/10.1016/j.jelechem.2015.02.014

    Article  CAS  Google Scholar 

  33. Şengil, İ.A., Kulac, S., and Özacar, M., Treatment of tannery liming drum wastewater by electrocoagulation, J. Hazard. Mater., 2009, vol. 167, nos. 1–3, pp. 940–946. https://doi.org/10.1016/j.jhazmat.2009.01.099

  34. Feng, J.W., Sun, Y.B., Zheng, Z., Zhang, J.B., Li, S., and Tian, Y.C., Treatment of tannery wastewater by electrocoagulation, J. Environ. Sci., 2007, vol. 19, no. 12, pp. 1409–1415. https://doi.org/10.1016/S1001-0742(07)60230-7

    Article  CAS  Google Scholar 

  35. Meshalkin, V.P., Current theoretical and applied research on energy- and resource-saving highly reliable chemical process systems engineering, Theor. Found. Chem. Eng., 2021, vol. 55, no. 4, pp. 563–587. https://doi.org/10.1134/S004057952104031X

    Article  CAS  Google Scholar 

  36. Ochkin, A.V. and Kulov, N.N., Comparison of the molar volumes of some electrolytes, Theor. Found. Chem. Eng., 2022, vol. 56, no. 5, pp. 644–649. https://doi.org/10.1134/S0040579522050311

    Article  Google Scholar 

  37. Maimekov, Z.K., Sambaeva, D.A., Izakov, J.B., Shaikieva, N.T., Dolaz, M., and Kobya, M., Concentration distribution of molecules and other species in the model system Fe–NaCl–Na2S–H2SO4–H2O at various temperatures of the electrocoagulation process, Theor. Found. Chem. Eng., 2023, vol. 57, no. 2, pp. 205–214. https://doi.org/10.1134/S0040579523020069

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Dolaz.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikieva, N., Dolaz, M., Maimekov, Z. et al. Electrochemical Sulfur Removal at Controlled and Uncontrolled pHs with an Iron Anode. Theor Found Chem Eng 57, 1444–1454 (2023). https://doi.org/10.1134/S0040579523060180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523060180

Keywords:

Navigation