Skip to main content
Log in

A Comparative Investigation of an Argon Dielectric Barrier Discharge Reactor under the Variation of Plasma Conditions for Optimization of Power Deposition

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Gas discharges in the plasma atmosphere are known to consist of a collection of different particles, mainly electrons, ions, neutral atoms, and molecules. The present need is to characterize the plasmas and optimization of the designed plasma system under variable conditions. In this work, a time-dependent, one-dimensional simulation of an optimized DBD device, driven by a sinusoidal alternating high voltage, in argon gas is demonstrated. First of all, a DBD device with two electrodes, covered by the dielectric and with the variable discharge gap was assumed, and the discharge parameters were simulated versus time across the plasma gap. A comparison between the results is carried out. In the second part, with a fixed gap that was obtained from previous section, when the dielectric thickness changed, the plasma parameters were simulated. In the third case, with a fixed discharge gap and dielectric thickness, the plate diameters were varied and the best diameter was selected to deliver the best power deposition. Finally, the operating frequency and voltage were varied and the optimized values were obtained. Time-dependent and 1D profiles of the electric field, electron density, electron temperature, ion current density, electron current density, plasma, total current, and power deposition are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

REFERENCES

  1. Sharma, N.K., Misra, S., Varun, and Pal, U.N., Experimental and simulation analysis of dielectric barrier discharge based pulsed cold atmospheric pressure plasma jet, Phys. Plasmas, 2020, vol. 27, no. 11, article no. 113502. https://doi.org/10.1063/5.0018901

    Article  ADS  CAS  Google Scholar 

  2. Neretti, G., Popoli, A., Scaltriti, S.G., and Cristofolini, A., Real time power control in a high voltage power supply for dielectric barrier discharge reactors: Implementation strategy and load thermal analysis, Electronics, 2022, vol. 11, no. 10, article no. 1536, pp. 1–14. https://doi.org/10.3390/electronics11101536

  3. Mohades, S., Lietz, A.M., and Kushner, M.J., Generation of reactive species in water film dielectric barrier discharges sustained in argon, helium, air, oxygen and nitrogen, J. Phys. D: Appl. Phys., 2020, vol. 53, no. 43, article no. 435206, pp. 1–20. https://doi.org/10.1088/1361-6463/aba21a

  4. Ivković, S.S., Obradović, B.M., and Kuraica, M.M., Electric field measurement in a DBD in helium and helium–hydrogen mixture, J. Phys. D: Appl. Phys., 2012, vol. 45, no. 27, article no. 275204. https://doi.org/10.1088/0022-3727/45/27/275204

    Article  ADS  CAS  Google Scholar 

  5. Sergeichev, K.F., Lukina, N.A., Apasheva, L.M., Ovcharenko, E.N., and Lobanov, A.V., Water activated by a microwave plasma argon jet as a factor stimulating the germination of plant seeds, Russ. J. Phys. Chem. B, 2022, vol. 16, no. 1, pp. 84–89. https://doi.org/10.1134/S1990793122010134

    Article  CAS  Google Scholar 

  6. Shumova, V.V., Polyakov, D.N., and Vasilyak, L.M., The Chemi-ionization rate constant of metastable neon atoms in a glow discharge at cryogenic temperature, Russ. J. Phys. Chem. B, 2021, vol. 15, no. 4, pp. 691–695. https://doi.org/10.1134/S1990793121040242

    Article  CAS  Google Scholar 

  7. Shumova, V.V., Polyakov, D.N., and Vasilyak, L.M., Influence of metastable atoms on the heating of microparticles in the plasma of a gas discharge in neon, Russ. J. Phys. Chem. B, 2022, vol. 16, no. 5, pp. 912–916. https://doi.org/10.1134/S1990793122050232

    Article  CAS  Google Scholar 

  8. Al-Abduly, A., Christensen, P., and Harvey, A., The characterization of a packed bed plasma reactor for ozone generation, Plasma Sources Sci Technol., 2020, vol. 29, no. 3, article no. 035002, pp. 1–13. https://doi.org/10.1088/1361-6595/ab6c82

  9. Hafeez, A., Javed, F., Fazal, T, Shezad, N., Amjad, U.-S., ur Rehman, M. S., and Rehman, F., Intensification of ozone generation and degradation of azo dye in non-thermal hybrid corona-DBD plasma micro-reactor, Chem Eng. Process., 2021, vol. 159, article no. 108205. https://doi.org/10.1016/j.cep.2020.108205

    Article  CAS  Google Scholar 

  10. Bastin, O., Thulliez, M., Serra, T., Nyssen, L., Fontaine, T., Devière, J., Delchambre, A, Reniers, F., and Nonclercq, A., Electrical equivalent model of a long dielectric barrier discharge plasma jet for endoscopy, J. Phys. D: Appl. Phys., 2023, vol. 56, no. 12, article no. 125201. https://doi.org/10.1088/1361-6463/acb603

    Article  ADS  Google Scholar 

  11. Moralev, I.A. and Selivonin, I.V., Edge effects in flow around a plasma actuator, Tech. Phys. Lett., 2017, vol. 43, no. 2, pp. 220–223. https://doi.org/10.1134/S1063785017020237

    Article  ADS  CAS  Google Scholar 

  12. Nebogatkin, S.V., Rebrov, I.E., Khomich, V.Yu, and Yamshchikov, V.A., Optimization of a multidischarge actuator system, Plasma Phys. Rep., 2019, vol. 45, no. 4, pp. 410–413. https://doi.org/10.1134/S1063780X19040056

    Article  ADS  Google Scholar 

  13. Kostov, K.G., Hamia, Y.A.A., Mota, R.P., dos Santos, A.L.R., and Nascente, P.A.P., Treatment of polycarbonate by dielectric barrier discharge (DBD) at atmospheric pressure, J. Phys.: Conf. Ser., 2014, vol. 511, article no. 012075. pp. 1–6. https://doi.org/10.1088/1742-6596/511/1/012075

  14. Dadashzadeh, N., Optimization of electricity consumption using Dielectric Barrier Discharge method (DBD), Majlesi J. Electr. Eng., 2023, vol. 17, no. 1, pp.117–121. https://doi.org/10.30486/mjee.2023.1975011.1024

    Article  Google Scholar 

  15. Poorreza, E. and Gargari, N.D., Study of the time dependence and one dimentional simulation of a dielectric barrier discharge reactor driven by sinusoidal high-frequency voltage, Russ. J. Phys. Chem. B, 2023, vol. 17, no. 3, pp. 631–645. https://doi.org/10.1134/S1990793123030107

    Article  CAS  Google Scholar 

  16. Fanelli, F. and Fracassi, F., Atmospheric pressure non-equilibrium plasma jet technology: General features, specificities and applications in surface processing of materials, Surf. Coat. Technol., 2017, vol. 322, pp. 174–201. https://doi.org/10.1016/j.surfcoat.2017.05.027

    Article  CAS  Google Scholar 

  17. Khan, T.M., Khan, S.U.-D., Raffi, M., and Khan, R., Theoretical–computational study of atmospheric DBD plasma and its utility for nanoscale biocompatible plasmonic coating, Molecules, 2021, vol. 26, no. 16, article no. 5106, pp. 1–16. https://doi.org/10.3390/molecules26165106

  18. Mendes-Oliveira, G, Jensen, J.L., Keener, K.M., and Campanella, O.H., Modeling the inactivation of Bacillus subtilis spores during cold plasma sterilization, Innovative Food Sci., Emerging Technol., 2019, vol. 52, pp. 334–342. https://doi.org/10.1016/j.ifset.2018.12.011

    Article  CAS  Google Scholar 

  19. Li, H., Yuan, C., Kudryavtsev, A., Astafiev, A., Bogdanov, E., Katircioglu, T.Y., and Rafatov, I., Analysis of parameters of coaxial dielectric barrier discharges in argon flow at atmospheric pressure, J. Appl. Phys., 2021, vol. 129, no. 15, article no. 153305. https://doi.org/10.1063/5.0045465

    Article  ADS  CAS  Google Scholar 

  20. Niu, G., Knodel, A., Burhenn, S., Brandt, S., and Franzke, J., Review; Miniature dielectric barrier discharge (DBD) in analytical atomic spectrometry, Anal. Chim. Acta, 2021, vol. 1147, pp. 211–239. https://doi.org/10.1016/j.aca.2020.11.034

    Article  PubMed  CAS  Google Scholar 

  21. Petrović, D., Martens, T., van Dijk, J., Brok, W.J.M., and Bogaerts, A., Fluid modelling of an atmospheric pressure dielectric barrier discharge in cylindrical geometry, J. Phys. D: Appl. Phys., 2009, vol. 42, no. 20, article no. 205206, pp. 1–12. https://doi.org/10.1088/0022-3727/42/20/205206

  22. Panov, V.A., Vasilyak, L.M., Vetchinin, S.P., Deshevaya, E.A., Pecherkin, V.Ya., and Son, E., Inactivation of microorganisms on plane surfaces by a dielectric barrier discharge, Plasma Phys. Rep., 2019, vol. 45, no. 5, pp. 517–521. https://doi.org/10.1134/S1063780X19050076

    Article  ADS  CAS  Google Scholar 

  23. Avtaeva, S.V., Hydrodynamic model of a dielectric-barrier discharge in pure chlorine, Plasma Phys. Rep., 2017, vol. 43, no. 8, pp. 876–890. https://doi.org/10.1134/S1063780X17080037

    Article  ADS  CAS  Google Scholar 

  24. Malashin, M.V., Moshkunov, S.I., Khomich, V.Yu., Shershunova, E.A., and Yamshchikov, V.A., On the possibility of generating volume dielectric barrier discharge in air at atmospheric pressure, Tech. Phys. Lett., 2013, vol. 39, no. 3, pp. 252–254. https://doi.org/10.1134/S1063785013030103

    Article  ADS  CAS  Google Scholar 

  25. Bocharnikov, V.M., Volodin, V.V., and Golub, V.V., Optimizing the efficiency of dielectric barrier discharge for creating synthetic jets, Tech. Phys. Lett., 2016, vol. 42, no. 4, pp. 351–353. https://doi.org/10.1134/S1063785016040052

    Article  ADS  CAS  Google Scholar 

  26. Zhang, S., Gao, Y., Sun, H., Fan, Z., and Shao, T., Dry reforming of methane by microsecond pulsed dielectric barrier discharge plasma: Optimizing the reactor structures, High Voltage, 2022, vol. 7, no. 4, pp. 718–729. https://doi.org/10.1049/hve2.12201

    Article  Google Scholar 

  27. Höft, H., Becker, M.M., and Kettlitz, M., Correlation of axial and radial breakdown dynamics in dielectric barrier discharges, Plasma Sources Sci. Technol., 2018, vol. 27, no. 3, article no. 03LT01. https://doi.org/10.1088/1361-6595/aab39d

    Article  CAS  Google Scholar 

  28. Zhang, Y., Ning, W., and Dai, D., Numerical investigation on the dynamics and evolution mechanisms of multiple-current-pulse behavior in homogeneous helium dielectric-barrier discharges at atmospheric pressure, AIP Adv., 2018, vol. 8, no. 3, article no. 035008. https://doi.org/10.1063/1.5019815

    Article  ADS  CAS  Google Scholar 

  29. Zhang, Y., Ning, W., Dai, D., and Wang, Q., Numerical study on the discharge pattern evolution in an atmospheric pressure helium dielectric barrier discharge under the variation of nitrogen admixture content, Plasma Sources Sci Technol., 2019, vol. 28, no. 7, article no. 075003. https://doi.org/10.1088/1361-6595/ab2520

    Article  ADS  CAS  Google Scholar 

  30. Lazarou, C., Belmonte, T., Chiper, A.S., and Georghiou, G.E., Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge, Plasma Sources Sci. Technol., 2016, vol. 25, no. 5, article no. 055023. https://doi.org/10.1088/0963-0252/25/5/055023

    Article  ADS  CAS  Google Scholar 

  31. Barjasteh, A. and Eslami, E., Numerical investigation of effect of driving voltage pulse on low pressure 90% Ar–10% Cl2 dielectric barrier discharge, Plasma Chem. Plasma Process., 2018, vol. 38, no. 1, pp. 261–279. https://doi.org/10.1007/s11090-017-9849-z

    Article  CAS  Google Scholar 

  32. Poorreza, E. and Dadashzadeh Gargari, N., Modeling and simulation of a microwave-assisted plasma with different input power for plasma-based applications, Russ. J. Phys. Chem. B, 2023, vol. 17, no. 3, pp. 719–724. https://doi.org/10.1134/S1990793123030235

    Article  CAS  Google Scholar 

  33. Fang, Z., Ji, S., Pan, J., Shao, T., and Zhang, C., Electrical model and experimental analysis of the atmospheric-pressure homogeneous dielectric barrier discharge in He, IEEE Trans. Plasma Sci., 2012, vol. 40, no. 3, pp. 883–891. https://doi.org/10.1109/TPS.2011.2180544

    Article  ADS  CAS  Google Scholar 

  34. Elaissi, S. and Alsaif, N.A.M., Modelling of nonthermal dielectric barrier discharge plasma at atmospheric pressure and role of produced reactive species in surface polymer microbial purification, Polymers, 2023, vol. 15, no. 5, article no. 1235, pp. 1–19. https://doi.org/10.3390/polym15051235

Download references

ACKNOWLEDGMENTS

The authors would like to express their sincere thanks to the Deputy of Research of Bonab for the financial support “Grant no.: 140219” and technical support.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

You will find below the authors contributions statement for our paper. Elnaz Poorreza: simulation work, discussions, reviewing, correction Reza. HadjiaghaieVafaie: discussions, reviewing, correction.

Corresponding author

Correspondence to R. Hadjiaghaie Vafaie.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorreza, E., Vafaie, R.H. A Comparative Investigation of an Argon Dielectric Barrier Discharge Reactor under the Variation of Plasma Conditions for Optimization of Power Deposition. Theor Found Chem Eng 57, 1552–1571 (2023). https://doi.org/10.1134/S0040579523330059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523330059

Keywords:

Navigation