Skip to main content
Log in

Development and Prospect of Arsenic Removal Technology for Containing Arsenic Copper Minerals

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Arsenic is a harmful element that widely exists in various non-ferrous metal minerals including copper. With the depletion of free and low arsenic copper ores, containing arsenic copper ore has become an important mineral resource for copper smelting and processing. In the smelting and extraction of copper minerals, arsenic poses a serious hazard to the environment. Therefore, the safe and effective removal arsenic plays a crucial role in copper smelting and processing, and it has a great significance in promoting the green and healthy development of the copper industry. This review summarized the resource characteristics of arsenic containing copper minerals, systematically analyzed current smelting progress of containing arsenic copper minerals, and searched for the difficult and key points existed in pyrometallurgical and wet processes for containing arsenic copper mines. The reasons for difficult point formation were explored in treating arsenic containing copper minerals. The pyrometallurgical roasting followed by high-temperature filtration is documented to be an important development direction for smelting and processing of arsenic containing minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Wang, C., Zuo, L., Hu, P., Yao, H.-J., and Zhu, H., Evaluation and simulation analysis of China’s copper security evolution trajectory, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, no. 8, pp. 2465–2474. https://doi.org/10.1016/S1003-6326(13)62756-9

    Article  Google Scholar 

  2. Johnson, K.M., Hammarstrom, J.M., Zientek, M.L., and Dicken, C.L., Estimate of undiscovered copper resources of the world, 2013, U.S. Geological Survey Fact Sheet 2014-3004. https://pubs.usgs.gov/fs/2014/ 3004/pdf/fs2014-3004.pdf. Cited January 9, 2024.

  3. Liu, S., Zhang, Y., Su, Z., Lu, M., Gu, F., Liu, J., and Jiang, T., Recycling the domestic copper scrap to address the China’s copper sustainability, J. Mater. Res. Technol., 2020, vol. 9, no. 3, pp. 2846–2855. https://doi.org/10.1016/j.jmrt.2020.01.019

    Article  Google Scholar 

  4. Rausser, G. and Stuermer, M., A Dynamic Analysis of Collusive Action: The Case of the World Copper Market, 1882–2016. MPRA Paper 104708. University. Library. of Munich. https://ideas.repec.org/p/pra/mprapa/104708.html. Cited January 01, 2024.

  5. Seck, G.S., Hache, E., Bonnet, C., Simoën, M., and Carcanague, S., Copper at the crossroads: Assessment of the interactions between low-carbon energy transition and supply limitations, Resour., Conserv. Recycl., 2020, vol. 163, article no. 105072. https://doi.org/10.1016/j.resconrec.2020.105072

    Article  PubMed  Google Scholar 

  6. Villena, M. and Greve, F., On resource depletion and productivity: The case of the Chilean copper industry, Resour. Policy, 2018, vol. 59, pp. 663–562. https://doi.org/10.1016/j.resourpol.2018.10.001

    Article  Google Scholar 

  7. Zheng-Qiong, L., Guan-Qun, L., Sheng-Xiang, G. et al., The research on the index regulation of copper concentrate in Chengmenshan Copper Mine, Copper Eng., 2017.

    Google Scholar 

  8. Qing-Jun, H.U., Mining loss and depletion management practice in fenghuangshan copper mine, World Nonferrous Met., 2019.

    Google Scholar 

  9. Chen, J., On present situation and potential analysis of copper resources in China. J. Geol. 2013.

  10. Rong, Z., Study of China’s current copper slag on the use of resources, Miner. Metall., 2008. https://api.semanticscholar.org/CorpusID:112935386. Cited December 31, 2023.

  11. Zhitian, W. and Kezhang, Q., Types, metallogenic environments and characteristics of temporal and spatial distribution of copper deposits in China, Acta Geol. Sin., 1989, vol. 2, no. 1, pp. 79–92. https://doi.org/10.1111/j.1755-6724.1989.mp2001007.x

    Article  Google Scholar 

  12. Luo, T., Cui, J., Hu, S., Huang, Y., and Jing, C., Arsenic removal and recovery from copper smelting wastewater using TiO2, Environ. Sci. Technol., 2010, vol. 44, no. 23, pp. 9094–9098. https://doi.org/10.1021/es1024355

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Taheri, M., Mehrzad, J., Mahmudy Gharaie, M.H., Afsari, R., Dadsetan, A., and Hami, S., High soil and groundwater arsenic levels induce high body arsenic loads, health risk and potential anemia for inhabitants of northeastern Iran, Environ. Geochem. Health, 2016, vol. 38, no. 2, pp. 469–482. https://doi.org/10.1007/s10653-015-9733-9

    Article  CAS  PubMed  Google Scholar 

  14. Northey, S., Mohr, S., Mudd, G.M., Weng, Z., and Giurco, D., Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining, Resour., Conserv. Recycl., 2014, vol. 83, pp. 190–201. https://doi.org/10.1016/j.resconrec.2013.10.005

    Article  Google Scholar 

  15. Mineral Commodity Summaries 2023, U.S. Geological Survey, https://pubs.usgs.gov/periodicals/mcs2023/ mcs2023.pdf. Cited January 9, 2024.

  16. Flanagan, D.M., Copper in June 2023, Mineral Industry Surveys, U.S. Geological Survey. https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/ production/s3fs-public/media/files/mis-202306-coppe. pdf. Cited January 01, 2024.

  17. Smith, L. K. and Bruckard, W.J., The separation of arsenic from copper in a Northparkes copper–gold ore using controlled-potential flotation, Int. J. Miner. Process., 2007, vol. 84, nos. 1–4, pp. 15–24. https://doi.org/10.1016/j.minpro.2007.05.002

  18. Hailiang, W., Flotation test of some sulphide copper ore containing high arsenic, Express Inf. Min. Ind., 2007.

  19. Liping, Q., Harm arsenic pollution and its treated technology, Eviron. Prot. Xinjiang, 1999.

    Google Scholar 

  20. Bo, Y. and Yang, W., Arsenic pollution status and repair technology: An overview, IOP Conf. Ser.: Earth Environ. Sci., 2019. vol. 300, no. 3, article no. 032094. https://doi.org/10.1088/1755-1315/300/3/032094

  21. Alka, S., Shahir, S., Ibrahim, N., Ndejiko, M.J., Vo, D.-V.N., and Manan, F.A., Arsenic removal technologies and future trends: A mini review, J. Cleaner Prod., 2021, vol. 278, article no. 123805. https://doi.org/10.1016/j.jclepro.2020.123805

    Article  CAS  Google Scholar 

  22. Bruckard, W.J., Davey, K.J., Jorgensen, F.R.A., Wright, S., Brew, D.R.M., Hague, N., and Vance, E.R., Development and evaluation of an early removal process for the beneficiation of arsenic-bearing copper ores, Miner. Eng., 2010, vol. 23, no. 15, pp. 1167–1173. https://doi.org/10.1016/j.mineng.2010.03.015

    Article  CAS  Google Scholar 

  23. Devia, M., Wilkomirsky, I., and Parra, R., Roasting kinetics of high-arsenic copper concentrates: A review, Min., Metall., Explor., 2012, vol. 29, no. 2, pp. 121–128. https://doi.org/10.1007/BF03402403

    Article  CAS  Google Scholar 

  24. Long, G., Peng, Y., and Bradshaw, D., A review of copper–arsenic mineral removal from copper concentrates, Miner. Eng., 2012, vols. 36–38, pp. 179–186. https://doi.org/10.1016/j.mineng.2012.03.032

  25. Safarzadeh, M.S. and Miller, J.D., The pyrometallurgy of enargite: A literature update, Int. J. Miner. Process., 2016, vol. 157, pp. 103–110. https://doi.org/10.1016/j.minpro.2016.09.008

    Article  CAS  Google Scholar 

  26. Shibayama, A., Takasaki, Y., William, T., Yamatodani, A., Higuchi, Y., Sunagawa, S., and Ono, E., Treatment of smelting residue for arsenic removal and recovery of copper using pyro–hydrometallurgical process, J. Hazard. Mater., 2010, vol. 181, nos. 1–3, pp. 1016–1023. https://doi.org/10.1016/j.jhazmat.2010.05.116

  27. Liuchuang, Z., Quanjun, L., Yuanqin, L. et al., Optimization arsenic removal from copper concentrate through alkali leaching based on response surface, Nonferrous Met. Eng., 2019.

    Google Scholar 

  28. Smith, E. H. and Paredes, E., How St. Joe Gold’s El Indio mine has become a major producer of high quality crude arsenic trioxide, in Arsenic Metallurgy: Fundamentals and Applications, Reddy, R.G., Hendtix, J.L., and Queneau, P.B., Eds., Warrendale, PA: Metall. Soc., 1988, pp. 145–160.

    Google Scholar 

  29. Secco, A.C., Riveros, G.A., and Luraschi, A.A., Thermal decomposition of enargite and phase relations in the system copper–arsenic–sulfur, in Copper 87, Pyrometallurgy of Copper, Diaz, C., Landolt, C., and Luraschi, A., Eds., Santiago: Univ. Chile, 1988, vol. 4., pp 225–238.

    Google Scholar 

  30. Padilla, R., Fan, Y., and Wilkomirsky, I., Thermal decomposition of enargite, EPD Congress 1999, Mishra, B., Ed., Warrendale: Miner., Met., Mater. Soc., 1999, pp. 341–351.

  31. Lindkvist, G. and Holmström, A., Roasting of complex concentrates with high arsenic content, in Advances in Sulfide Smelting, Technology and Practice, Sohn, H.Y., George, D.B., and Zunkel, A.D., Eds., Warrendale, PA: Metall. Soc., 1983, vol. II, pp. 451–472.

    Google Scholar 

  32. Yaozhong, L. and Smith, R.W., Arsenic removal from high arsenic bearing gold sulphide concentrate, Miner. Process. Extr. Metall., 2004, vol. 113, no. 3, pp. 129–191. https://doi.org/10.1179/037195504225006560

    Article  CAS  Google Scholar 

  33. Zabev, T., Van Weert, G., and Coursol, P., Observations on the reductive pyro dearsenification of enargite, Proc. Copper Int. Conf., (Cobre2013), Santiago, 2013.

  34. Van Weert, G., van Sandwijk, T., Xiao, Y., McHugh, L., and Zabev, T., A possible role for pyrite in the reductive pyro de-arsenification of enargite, Proc. Conf. Metall., (COM 2014), Vancouver, 2014, paper no. 8419.

  35. Yoshimura, Z., The fundamental investigation of dearsenising roasting of copper concentrates and its industrial practice, J. Min. Metall. Inst. Jpn., 1962 vol. 78, no. 888, pp. 447–453.

    CAS  Google Scholar 

  36. Padilla, R., Aracena, A., and Ruiz, M. C., Decomposition/volatilization of energite in nitrogen–oxygen atmosphere [C], Proc. TMS 2010–139 th Annu. Meet. Exhib., Seatle, WA, 2010, vol. 1, pp. 497–504.

  37. Adham, K. and Harris, C.T., Two-stage fluid bed reactor for arsenic removal and fixation, Proc. COM 2014 - Conf. Metall. Proc., Quebec, 2014, pp. 1–10.

  38. Guo, X. and Du, A., Thermodynamic equilibrium diagram of oxygen–chlorine–titanium system, Adv. Mater. Res., 2011 vols. 233–235, pp. 2068–2071. https://doi.org10.4028/www.scientific.net/AMR.233-235.2068

  39. Chambers, B., Pickles, C.A., and Peacey, J.G., Thermodynamic analysis of the sulfation roasting of enargite concentrates, High Temp. Mater. Processes, 2012, vol. 31, nos. 4–5, pp. 613–625. https://doi.org/10.1515/htmp-2012-0099

  40. Putra, T.A.R., Arsenic removal from enargite with sodium carbonate using complete and partial oxidized roasting, Doctoral (Min. Earth Syst. Eng.) Dissertation, Golden, CO: Colo. Sch. Mines, 2013.

  41. Zhang, X., Tian, J., Han, H., Sun, W., Hu, Y., Wang, T.Y.L., Yang, Y., Cao, X., and Tang, H., Arsenic removal from arsenic-containing copper and cobalt slag using alkaline leaching technology and MgNH4AsO4 precipitation, Sep. Purif. Technol., 2020, vol. 238, article no. 116422. https://doi.org/10.1016/j.seppur.2019.116422

    Article  CAS  Google Scholar 

  42. Li, Y., Liu, Z., Li, Q., Zhao, Z., Liu, Z., Zeng, L., and Li, L., Removal of arsenic from arsenate complex contained in secondary zinc oxide, Hydrometallurgy, 2011, vol. 109, nos. 3–4, pp. 237–244. https://doi.org/10.1016/j.hydromet.2011.07.007

  43. Ding, J. and Wang, Y., Study on arsenic removal from high arsenic copper ore by sodium sulfide sodium hydroxide leaching, Nonferrous Met., 1983 vol. 4, pp. 24–27.

    Google Scholar 

  44. Ruiz, M.C., Grandon, L., and Padilla, R., Selective arsenic removal from enargite by alkaline digestion and water leaching, Hydrometallurgy, 2014, vol. 150, pp. 20–26. https://doi.org/10.1016/j.hydromet.2014.09.004

    Article  CAS  Google Scholar 

  45. Tongamp, W., Takasaki, Y., and Shibayama, A., Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media, Hydrometallurgy, 2009, vol. 98, nos. 3–4, pp. 213–218. https://doi.org/10.1016/j.hydromet.2009.04.020

  46. Dianzuo, W., Anzhang, M., Guanzhou, Q. et al., Thermodynamic analysis of FeAsS, FeS2, Au in NaClO–NaOH solution and one-step leaching of gold, Nonferrous Met., 1998.

    Google Scholar 

  47. Viñals, J., Roca, A., Hernández, M.C., and Benavente, O., Topochemical transformation of enargite into copper oxide by hypochlorite leaching, Hydrometallurgy, 2003, vol. 68, nos. 1–3, pp. 183–193. https://doi.org/10.1016/S0304-386X(02)00200-1

  48. Li, W., Han, J., Liu, W., Jiao, F., Wang, H., and Qin, W., Separation of arsenic from lead smelter ash by acid leaching combined with pressure oxidation, Sep. Purif. Technol., 2021, vol. 273, article no. 118988. https://doi.org/10.1016/j.seppur.2021.118988

    Article  CAS  Google Scholar 

  49. Li, Y., Xu, Z., and Zhang, G., Study on the removal of arsenic in pyrite cinder by acid leaching, Adv. Mater. Res., 2013, vols. 781–784, pp. 2114–2119. https://doi.org/10.4028/www.scientific.net/amr.781-784.2114

  50. Gupta, M.Z., An investigation into the leaching of enargite under atmospheric conditions, Master (Appl. Sci.) Thesis, Kingston: Quenn’s Univ., 2010.

  51. Rivera-Vasquez, B.F. and Dixon, D., Rapid atmospheric leaching of enargite in acidic ferric sulfate media, Hydrometallurgy, 2015, vol. 152, pp. 149–158. https://doi.org/10.1016/j.hydromet.2014.12.012

    Article  CAS  Google Scholar 

  52. Yarlagadda, S., Gude, V.G., Camacho, L.M., Pinappu. S., and Deng, S., Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process, J. Hazard. Mater., 2011, vol. 192, no. 3, pp. 1388–1394. https://doi.org/10.1016/j.jhazmat.2011.06.056

    Article  CAS  PubMed  Google Scholar 

  53. Pal, P. and Manna, A.K., Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes, Water Res., 2010, vol. 44, no. 19, pp. 5750–5760. https://doi.org/10.1016/j.watres.2010.05.031

    Article  CAS  PubMed  Google Scholar 

  54. Govindaiah, P., Guerra, E., Choi, Y., and Ye, Z., Pressure oxidation leaching of an enargite concentrate in the presence of polytetrafluoroethylene beads, Hydrometallurgy, 2015, vol. 157, pp. 340–347. https://doi.org/10.1016/j.hydromet.2015.09.010

    Article  CAS  Google Scholar 

  55. Zhang, Y., Study on bacterial leaching of high arsenic-bearing primary copper aulfide ore, Min. Metall. Eng., 2011.

  56. Wu, A., Experimental study on bioleaching of copper sulfide tailings under alkaline conditions, Min. Metall. Eng., 2011, vol. 31, no. 3, pp. 89–88.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the National Key Research and Development Plan of Ministry of Science and Technology of China (2019YFF0216502), and Major Science and Technological Innovation Project of Hunan Province (2021SK1020-4).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The data collection and manuscript writing were performed by Xiaowei Tang. Yuehui He supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. H. He.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X.W., He, Y.H. Development and Prospect of Arsenic Removal Technology for Containing Arsenic Copper Minerals. Theor Found Chem Eng 57, 1594–1601 (2023). https://doi.org/10.1134/S0040579523330096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523330096

Keywords:

Navigation