Skip to main content
Log in

Optimizing the Ultrasound-Assisted Extraction of Total Cardiac Glycosides from the Milk of Calotropis Gigantea with Response Surface Methodology

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The ultrasound-assisted extraction was carried out to separate the total cardiac glycoside from the milk of Calotropis gigantea, and the extraction factors was optimized by response surface method using the Box–Behnken design (BBD) on total cardiac glycoside extraction was determined and optimized. A quadratic polynomial parameter mathematical model was established. Under the optimized conditions of ethanol concentration = 40% (vol), liquid-material ratio = 40 : 1, ultrasound power = 420 W and ultrasonic time = 30 min, the total cardiac glycoside yield is 12.75%, which is very close to the predicted value of 12.48%. The model predicts the experimental data well and has a high determination coefficient (R2 = 0.992). The variables that have a greater influence on the extraction yield were selected as ultrasonic power, ultrasonic time, ethanol concentration and liquid-material ratio, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.

REFERENCES

  1. Yu, M., Dai, H., Huang, S., Ran, H., Gai, C., Gai, C., Mei, W., and Wang, H., Study on chemical constituents and their cytotoxic activities from the stems of Calotropis gigantean, Nat. Prod. Res. Dev., 2021, vol. 33, no. 9, pp. 1513–1518. https://doi.org/10.16333/j.1001-6880.2021.9.009

    Article  CAS  Google Scholar 

  2. Caixia, Y., Chenglong, M., Xiaolin G., Junhui, Y., and Fei, G., Chemical constituents from the roots of Calotropis gigantea, J. Northwest Norm. Univ., (Nat. Sci.), 2018, vol. 54, no. 5, p.78.

    Google Scholar 

  3. Škubník, J., Pavlíčková, V.S., Ruml, T., Rimpelova, S., and Silvie, R., Cardiac glycosides as immune system modulators, Biomolecules, 2021, vol. 11, no. 5, article no. 659, pp. 1—15. https://doi.org/10.3390/biom11050659

  4. Seema, P., Plant-derived cardiac glycosides: Role in heart ailments and cancer management, Biomed. Pharmacother., 2016, vol. 84, pp. 1036–1041. https://doi.org/10.1016/j.biopha.2016.10.030

    Article  CAS  Google Scholar 

  5. Whayne, T.F., Jr., Clinical use of digitalis: A state of the art review, Am. J. Cardiovasc. Drugs, 2018, vol. 18, no. 6, pp. 427–440. https://doi.org/10.1007/s40256-018-0292-1

    Article  PubMed  CAS  Google Scholar 

  6. Elio, A., There is a place for digoxin: We think so!, J. Am. Coll. Cardiol., 2018, vol. 72, no. 1, pp. 123–124. https://doi.org/10.1016/j.jacc.2018.03.542

    Article  Google Scholar 

  7. Saranyoo, K., Vatcharin, R., Saowanit, S., Souwalak, P., and Jariya, S., Trichothecenes from a soil-derived Trichoderma brevicompactum, J. Nat. Prod., 2019, vol. 82, no. 4, pp. 687–693. https://doi.org/10.1021/acs.jnatprod.8b00205

    Article  CAS  Google Scholar 

  8. Kaushik, V., Azad, N., Yakisich, J.S., and Iver, A.K.V., Antitumor effects of naturally occurring cardiac glycosides convallatoxin and peruvoside on human ER+ and triple-negative breast cancers, Cell Death Discovery, 2017, vol. 3, article no. 17009, pp. 1–9. https://doi.org/10.1038/cddiscovery.2017.9

  9. Zhu, J., .Zhang, X., Miao, Y., He, S., Tian, D., Yao, X., Tang, J., and Gan, Y., Delivery of acetylthevetin B, an antitumor cardiac glycoside, using polymeric micelles for enhanced therapeutic efficacy against lung cancer cells, Acta Pharmacol. Sin., 2017, vol. 38, no. 3, pp. 290–300. https://doi.org/10.1038/aps.2016.113

    Article  PubMed  CAS  Google Scholar 

  10. Fürst, R., Zündorf, I., and Dingermann, T., New knowledge about old drugs: The anti-inflammatory properties of cardiac glycosides, Planta Med., 2017, vol. 83, nos. 12–13, pp. 977–984. https://doi.org/10.1055/s-0043-105390

  11. Schneider, N.F.Z., Cerella, C., Simões, C.N.O., and Diederich, M., Anticancer and immunogenic properties of cardiac glycosides, Molecules, 2017, vol. 22, no. 11, article no. 1932, pp. 1—16. https://doi.org/10.3390/molecules22111932

  12. Li, H.-X., .Xiao, C.-J., Wang, M., Cui, S.-J., Li, H.-F., Wang, K.-L., Dong, X., and Tiang, B., Four new phenylethanoid glycosides from Ternstroemia gymnanthera and their analgesic activities, Phytochem. Lett., 2019, vol. 34, pp. 25–29. https://doi.org/10.1016/j.phytol.2019.09.009

    Article  CAS  Google Scholar 

  13. Chen, L., Li, J., Ke, X., Sun, C., Huang, X., Jiang, P., Feng, F., Liu, W., and Zhang, J., Chemical profiling and the potential active constituents responsible for wound healing in Periploca forrestii Schltr, J. Ethnopharmacol., 2018, vol. 224, pp. 230–241. https://doi.org/10.1016/j.jep.2018.04.023

    Article  PubMed  CAS  Google Scholar 

  14. Li, Y., Li, J., Zhou, K., He, J., Cao, J., An, M., and Chang, V.-X., A review on phytochemistry and pharmacology of Cortex Periplocae, Molecules, 2016, vol. 21, no. 12, article no. 1702. https://doi.org/10.3390/molecules21121702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang, M.-Y., Wang, J.-R., Zhang, X.-R., Yan, X.-X., and Wang, Z.-N., Liposoluble constituents from the flowers of Calotropis gigantea and their antimicrobial activities, Chin. Med. Mat., 2017, vol. 36, no. 3, pp. 404–407.

    Google Scholar 

  16. Alibasyah, Z.M., Ningsih, D.S., Sunnati, S., Andayani, R., and Ranggaswuni, N.P., Antibacterial effects of Calotropisgigantea (L) extracts on Porphyromonasgingivalis, J. Biomimetics, Biomatel. Biomed. Eng., 2020, vol. 48, pp. 111–118. doi 10.4028/www.scientific.net/jbbbe.48.111

  17. Enas, M.A. and Basem, M.A., Effective inhibition of candidiasis using an eco-friendly leaf extract of Calotropis-gigantean-mediated silver nanoparticles, Nanomaterials, 2020, vol. 10, no. 3, article no. 422, pp. 1–16. https://doi.org/10.3390/nano10030422

  18. Chen, Y., Zhang, J., Li, Q., Wu, J., Sun, F., Liu, Z., Zjao, C., and Liang, S., Response surface methodology for optimizing the ultrasound-assisted extraction of polysaccharides from Acanthopanax giraldii, Chem. Pharm. Bull., 2018, vol. 66, no. 8, pp. 785–793. https://doi.org/10.1248/cpb.c18-00030

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks to Tropical Crop Genetic Resources Institute of Chinese Academy of Tropical Agricultural Sciences for providing experimental equipment and help.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Gao or F. Zha.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z.Y., Gong, R., Gao, F. et al. Optimizing the Ultrasound-Assisted Extraction of Total Cardiac Glycosides from the Milk of Calotropis Gigantea with Response Surface Methodology. Theor Found Chem Eng 57 (Suppl 1), S1–S10 (2023). https://doi.org/10.1134/S0040579523070072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523070072

Keywords:

Navigation