Skip to main content
Log in

Denitrogenation of Light Hydrocarbon Fractions with Natural Deep Eutectic Solvents Using Commercial Extraction Equipment

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrophilic deep eutectic solvents are actively positioned as efficient extractants for removing heterocyclic compounds from light hydrocarbon fractions. Of particular interest is the subclass of natural deep eutectic solvents (NaDESs), since they contain substances of exclusively natural origin. However, these processes have not been systematically studied to date in extraction equipment. To study the process of countercurrent extraction of pyridine, quinoline, and indole from a model solution of light hydrocarbon fractions using commercial equipment, a series of NaDESs based on citric and malic acids, xylitol, and water was used for the first time in this work. The high extraction capacity of these NaDES was demonstrated in laboratory experiments, and the extraction mechanism was determined. A detailed study of the efficiency of extraction of heterocycles with varying process conditions allowed us to move on to studying the process using extractors of the mixer–settler type. From the model solution of light hydrocarbon fractions, pyridine, quinoline, and indole were removed to concentrations <1 ppm by countercurrent extraction using a cascade of six mixer–settlers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Federal Register : Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards. https://www.federalregister.gov/documents/ 2013/05/21/2013-08500/control-of-air-pollution-from-motor-vehicles-tier-3-motor-vehicle-emission-and-fuel-standards.

  2. World health statistics 2022: monitoring health for the SDGs, sustainable development goals. https://www. who.int/publications-detail-redirect/9789240051157.

  3. Wang, Z., Wang, Z., Sun, Z., Ma, K., Du, L., and Yuan-, R., Evolution of S/N containing compounds in pyrolysis of highly oily petroleum sludge, Fuel, 2022, vol. 318, article no. 123687. https://doi.org/10.1016/j.fuel.2022.123687

    Article  CAS  Google Scholar 

  4. Rashidi, S., Nikou, M.R.K., and Anvaripour, B., Adsorptive desulfurization and denitrogenation of model fuel using HPW and NiO–HPW modified aluminosilicate mesostructures, Microporous Mesoporous Mater., 2015, vol. 211, pp. 134–141. https://doi.org/10.1016/j.micromeso.2015.02.041

    Article  CAS  Google Scholar 

  5. Jiang, X., Zhu, S., Gao, J., Yu, Y., Xiong, C., Li, C., and Yang, W., Extractive removal of both basic and non-basic nitrogens from fuel oil by dicarboxyl-modified polyethylene glycol: Performance and mechanism, Fuel, 2019, vol. 254, article no. 115626. https://doi.org/10.1016/j.fuel.2019.115626

    Article  CAS  Google Scholar 

  6. Gaile, A.A., Kostenko, A.V., Semenov, L.V., and Koldobskaya, L.L., Extraction of 1-methylnaphthalene, benzothiophene, and indole with N-methylpyrrolidone from their mixtures with alkanes, Russ. J. Appl. Chem., 2005, vol. 78, no. 9, pp. 1403–1407. https://doi.org/10.1007/s11167-005-0526-2

    Article  CAS  Google Scholar 

  7. Lemaoui, T., Benguerba, Y., Darwish, A.S., Hatab, F.A., Warrag, S.E.E., Kroon, M.C., and Alnashef, I.M., Simultaneous dearomatization, desulfurization, and denitrogenation of diesel fuels using acidic deep eutectic solvents as extractive agents: A parametric study, Sep. Purif. Technol., 2021, vol. 256, article no. 117861. https://doi.org/10.1016/j.seppur.2020.117861

    Article  CAS  Google Scholar 

  8. Mohsen-Nia, M., Modarress, H., Doulabi, F., and Bagheri, H., Liquid + liquid equilibria for ternary mixtures of (solvent + aromatic hydrocarbon + alkane), J. Chem. Thermodyn., 2005, vol. 37, no. 10, pp. 1111–1118. https://doi.org/10.1016/j.jct.2005.01.016

    Article  CAS  Google Scholar 

  9. Mokhtar, W.N.A.W., Bakar, W.A.W.A., Ali, R., and Kadir, A.A.A., Deep desulfurization of model diesel by extraction with N,N-dimethylformamide: Optimization by Box–Behnken design, J. Taiwan Inst. Chem. Eng., 2014. vol. 45, no. 4, pp. 1542–1548. https://doi.org/10.1016/j.jtice.2014.03.017

    Article  CAS  Google Scholar 

  10. Rodriguez, N.R., Requejo, P.F., and Kroon, M.C., Aliphatic–aromatic separation using deep eutectic solvents as extracting agents, Ind. Eng. Chem. Res., 2015, vol. 54, no. 45, pp. 11404–11412. https://doi.org/10.1021/acs.iecr.5b02611

    Article  CAS  Google Scholar 

  11. Zakhodyaeva, Yu.A., Solov’ev, V.O., Zinov’eva, I.V., Rudakov, D.G., Timoshenko, A.V., and Voshkin, A.A., Interphase distribution of thiophene, toluene, and o-xylene in the hexane–polymer–water extraction system, Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, pp. 550–555. https://doi.org/10.1134/S0040579519040298

    Article  CAS  Google Scholar 

  12. Solov’ev, V.O., Zakhodyaeva, Yu.A., and Voshkin, A.A., On the influence of additives of polymer, sodium nitrate, and 1-methyl-2-pyrrolidone on the extraction of thiophene in an n-hexan–water system, Theor. Found. Chem. Eng., 2020, vol. 54, no. 5, pp. 894–899. https://doi.org/10.1134/S0040579520050437

  13. Soloviev, V.O., Solovieva, S.V., Zakhodyaeva, Yu.A., and Voshkin, A.A., Extraction of thiophene with methyl ether of polyethylene glycol 350, Theor. Found. Chem. Eng., 2021, vol. 55, no. 6, pp. 1178–1184. https://doi.org/10.1134/S0040579521060129

    Article  CAS  Google Scholar 

  14. Solov’ev, V.O., Solov′eva, S.V., Zakhodyaeva, Yu.A., and Voshkin, A.A., Extractive denitrogenization of liquid model fuel using polyethylene glycol methyl ether 350, Can. J. Chem. Eng., 2023. https://doi.org/10.1002/cjce.25096

  15. Kozhevnikova, A.V., Zinov′eva, I.V., Milevskii, N.A., Zakhodyaeva, Yu.A., and Voshkin A.A., Complex extraction of rare earth elements from nitrate solutions with a tri-n-octylamine-octanoic acid bifunctional ionic liquid, J. Mol. Liq., 2023, vol. 390, part B, article no. 123073. https://doi.org/10.1016/j.molliq.2023.123073

  16. Królikowski, M., Więckowski, M., and Zawadzki, M., Separation of organosulfur compounds from heptane by liquid–liquid extraction with tricyanomethanide based ionic liquids. Experimental data and NRTL correlation, J. Chem. Thermodyn., 2020, vol. 149, article no. 106149. https://doi.org/10.1016/j.jct.2020.106149

    Article  CAS  Google Scholar 

  17. Zhang, Z., Li, Y., Gao, J., Yohannes, A., Song, H., and Yao, S., Removal of pyridine, quinoline, and aniline from oil by extraction with aqueous solution of (hydroxy)quinolinium and benzothiazolium ionic liquids in various ways, Separations, 2021, vol. 8, no. 11, article no. 216, pp. 1–17. https://doi.org/10.3390/separations8110216

  18. Królikowska, M., Królikowski, M., and Domańska, U., Effect of cation structure in quinolinium-based ionic liquids on the solubility in aromatic sulfur compounds or heptane: Thermodynamic study on phase diagrams, Molecules, 2020, vol. 25, no. 23, article no. 5687, pp. 1–17. https://doi.org/10.3390/molecules25235687

  19. Rogošić, M., Sander, A., and Pantaler, M., Application of 1-pentyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide for desulfurization, denitrification and dearomatization of FCC gasoline, J. Chem. Thermodyn., 2014, vol. 76, pp. 1–15. https://doi.org/10.1016/j.jct.2014.04.010

    Article  CAS  Google Scholar 

  20. Wang, H., Xie, C., Yu, S., and Liu, F., Denitrification of simulated oil by extraction with H2PO4-based ionic liquids, Chem. Eng. J., 2014, vol. 237, no. 2, pp. 286–290. https://doi.org/10.1016/j.cej.2013.10.049

    Article  CAS  Google Scholar 

  21. Zhang, T., Bing, X., Wang, D., Gao, J., Zhang, L., Xu, D., Zhang, Y., and Wang, Y., Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids, J. Environ. Chem. Eng., 2021, vol. 9, no. 3, article no. 105255. https://doi.org/10.1016/j.jece.2021.105255

    Article  CAS  Google Scholar 

  22. Jiao, T., Ren, C., Lin, S., Zhang, L., Xu, X., Zhang, Y., Zhang, W., and Liang, P., The extraction mechanism research for the separation of indole through the formation of deep eutectic solvents with quaternary ammonium salts, J. Mol. Liq., 2022, vol. 347, article no. 118325. https://doi.org/10.1016/j.molliq.2021.118325

    Article  CAS  Google Scholar 

  23. Dai, Y., Van Spronsen, J., Witkamp, G.-J., Verpoorte, R., and Choi, Y.H., Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta, 2013, vol. 766, pp. 61–68. https://doi.org/10.1016/j.aca.2012.12.019

    Article  PubMed  CAS  Google Scholar 

  24. Tang, B., Bi, W., Tian, M., and Row, K.H., Application of ionic liquid for extraction and separation of bioactive compounds from plants, J. Chromatogr. B, 2012, vol. 904, pp. 1–21. https://doi.org/10.1016/j.jchromb.2012.07.020

    Article  CAS  Google Scholar 

  25. Zuo, Y., Wu, J., Chen, X., Wei, N., and Tong, J., Green and low-cost deep eutectic solvents for efficient extraction of basic and non-basic nitrides in simulated oils, Sep. Purif. Technol., 2023, vol. 325, article no. 124714. https://doi.org/10.1016/j.seppur.2023.124714

    Article  CAS  Google Scholar 

  26. Chandran, D., Khalid, M., Walvekar, R., Mubarak, N.M., Dharaskar, S., Wong, W.Y., and Gupta, T.C.S.M., Deep eutectic solvents for extraction-desulphurization: A review, J. Mol. Liq., 2019, vol. 275, pp. 312–322. https://doi.org/10.1016/j.molliq.2018.11.051

    Article  CAS  Google Scholar 

  27. Milevskii, N.A., Zinov’eva, I.V., Kozhevnikova, A.V., Zakhodyaeva, Y.A., and Voshkin, A.A., Sm/Co magnetic materials: A recycling strategy using modifiable hydrophobic deep eutectic solvents based on trioctylphosphine oxide, Int. J. Mol. Sci., 2023, vol. 24, no. 18, article no. 14032, pp. 1–15.https://doi.org/10.3390/ijms241814032

  28. Zinov’eva, I.V., Kozhevnikova, A.V., Milevskii, N.A., Zakhodyaeva, Yu.A., and Voshkin A.A., Extraction of Cu(II), Ni(II), and Al(III) with the deep eutectic solvent D2EHPA/menthol, Theor. Found. Chem. Eng., 2022, vol. 56, no. 2, pp. 221–229. https://doi.org/10.1134/S0040579522020178

  29. Ali, M.C., Yang, Q., Fine, A.A., Jin, W., Zhang, Z., Xing, H., and Ren, Q., Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents, Green Chem., 2016, vol. 18, no. 1, pp. 157–164. https://doi.org/10.1039/D3GC03642A

    Article  Google Scholar 

  30. Darwish, A.S., Hatab, F.A., Lemaoui, T., Ibrahim, O.A.Z., Almustafa, G., Zhuman, B., Warrag S.E.E., Hadj-Kali, M.K., Benguerba, Y., and Alnashef, I.M., Multicomponent extraction of aromatics and heteroaromatics from diesel using acidic eutectic solvents: Experimental and COSMO-RS predictions, J. Mol. Liq., 2021, vol. 336, article no. 116575. https://doi.org/10.1016/j.molliq.2021.116575

    Article  CAS  Google Scholar 

  31. Santana, A.P.R., Mora-Vargas, J.A., Guimarães, T.G.S., Amaral, C.D.B., Oliveira, A., and Gonzalez, M.H., Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods, J. Mol. Liq., 2019, vol. 293, article no. 111452. https://doi.org/10.1016/j.molliq.2019.111452

    Article  CAS  Google Scholar 

  32. Zhu, S., Xu, J., Cheng, H., Gao, J., Jiang, X., Li, C., and Yang, W., Poly(ethylene glycol) diacid-based deep eutectic solvent with excellent denitrogenation performance and distinctive extractive behavior, Energy Fuels, 2019, vol. 33, no. 10, pp. 10380–10388. https://doi.org/10.1021/acs.energyfuels.9b02463

    Article  CAS  Google Scholar 

  33. Yao, H., Yang, D., Li, C., and Wang, E., Intensification of water on the extraction of pyridine from n-hexane using ionic liquid, Chem. Eng. Process., 2018, vol. 130, no. 08, pp. 61–66. https://doi.org/10.1016/j.cep.2018.05.016

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Center for Shared Use of Scientific Equipment for Physicochemical Research Methods, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakhodyaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobovich, D.V., Solov’eva, S.V., Milevskii, N.A. et al. Denitrogenation of Light Hydrocarbon Fractions with Natural Deep Eutectic Solvents Using Commercial Extraction Equipment. Theor Found Chem Eng 57, 1276–1291 (2023). https://doi.org/10.1134/S0040579523060131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523060131

Keywords:

Navigation