Skip to main content
Log in

Study the Process of Siloxane Curing by Experimental and Numerical Simulation

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Curing process of siloxane polymer was studied by determining rate of heat released during Dynamic DSC analysis. Utilizing thermokinetics software were calculated model-free methods such as Kissinger, Flynn–Wall–Ozawa, Friedman and also model-fitting methods such as Coats Redfern. To improve accuracy, Khavam Flanagan’s combined method was utilized and the third-order Avrami model was determined. Simulation of the curing process was done using OpenFOAM open-source software based on the finite volume method. Simulation results were validated using DSC Isothermal data. The results of the simulated sample were in good agreement with the experimental data. The curing time was investigated in cylindrical, spherical, and cubic shapes. The longest curing time was assigned to sphere geometry and the least to rectangular cubes with equal length and width. To achieve the optimal curing method, the influence of various parameters on the curing process of polysiloxane, including oven temperature, mold geometry, boundary conditions (effect of curing in a fan oven) and geometry dimensions, resin density, and thermal conductivity coefficient were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

REFERENCES

  1. Kim, Y.B., Cho, D., and Park, W.H., Fabrication and characterization of TiO2/poly(dimethyl siloxane) composite fibers with thermal and mechanical stability, J. Appl. Polym. Sci., 2010, vol. 116, no. 1, pp. 449–454. doi.org/https://doi.org/10.1002/app.31480

    Article  CAS  Google Scholar 

  2. Dvornic, P.R., Thermal properties of polysiloxanes, in Silicon-Containing Polymers, Jones, R.G., Ando, W., and Chojnowski, J., Eds., Dordrecht: Springer, 2000, ch. 7, pp. 185–212. https://doi.org/10.1007/978-94-011-3939-7_7

    Book  Google Scholar 

  3. Young, R.J. and Lovell, P.A., Introduction to Polymers, Boca Raton, FL: CRC Press, 2011.

    Book  Google Scholar 

  4. Sheima, Y., Yuts, Y., Frauenrath, H., and Opris, D.M., Polysiloxanes modified with different types and contents of polar groups: synthesis, structure, and thermal and dielectric properties, Macromolecules, 2021, vol. 54, no. 12, pp. 5737–5749. https://doi.org/10.1021/acs.macromol.1c00362

    Article  ADS  CAS  Google Scholar 

  5. Hong, I.K. and Lee, S., Cure kinetics and modeling the reaction of silicone rubber, J. Ind. Eng. Chem., 2013, vol. 19, no. 1, pp. 42–47. https://doi.org/10.1016/j.jiec.2012.05.006

    Article  CAS  Google Scholar 

  6. Guo, Y. Investigation of silicone rubber blends and their shape memory properties, Master’s (Polym. Eng.) Thesis, Akron:, Univ. Akron, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1525982588046477. Cited December, 24, 2023.

  7. Javanbakht, T. Investigation on the rheological properties of polydimethylsiloxane. 2022.

  8. Brachaczek, W., The modelling technology of protective silicone coatings in terms of selected physical properties: Hydrophobicity, scrub resistance and water vapour diffusion, Prog. Org. Coat., 2014, vol. 77, no. 4, pp. 859–867. https://doi.org/10.1016/j.porgcoat.2014.01.016

    Article  CAS  Google Scholar 

  9. Ou, H.S.M.B. and Gelin, J.-C., Determination of the activation energy of silicone rubbers using different kinetic analysis methods. MATEC Web Conf., 2016, vol. 80, 16007, pp. 1–5. https://doi.org/10.1051/matecconf/20168016007

  10. Li, B., Zhang, Z., Ma, D., Zhai, Q., Feng, S., and Zhang, J., Preparation and kinetic analysis of room-temperature vulcanized methylethylsilicone rubbers, J. Appl. Polym. Sci., 2015, vol. 132, no. 41, article no. 42656. https://doi.org/10.1002/app.42656

    Article  CAS  Google Scholar 

  11. Liu, L., Yang, S., Zhang, Z., Wang, Q., and Xie, Z., Synthesis and characterization of poly(diethylsiloxane) and its copolymers with different diorganosiloxane units, J. Polym. Sci., Part A: Polym. Chem., 2003, vol. 41, no. 17, pp. 2722–2730. https://doi.org/10.1002/pola.10822

    Article  ADS  CAS  Google Scholar 

  12. Liu, Z., Shi, J., Zhao, N., and Li, Z., Fast synthesis of high molecular weights polydiethylsiloxanes and random poly (dimethylsiloxane-co-diethylsiloxane) copolysiloxanes via cyclic trimeric phosphazene base catalyzed ring-opening (co) polymerization, Eur. Polym. J., 2022, vol. 173, article no. 111280. https://doi.org/10.1016/j.eurpolymj.2022.111280

    Article  CAS  Google Scholar 

  13. Ye, X., Liu, H., Ding, Y., Li, H., and Lu, B., Research on the cast molding process for high quality PDMS molds, Microelectron. Eng., 2009, vol. 86, no. 3, pp. 310–313. https://doi.org/10.1016/j.mee.2008.10.011

    Article  CAS  Google Scholar 

  14. Redmann, A., Oehlmann, P., Scheffler, T., Kagermeier, L., and Osswald, T.A., Thermal curing kinetics optimization of epoxy resin in Digital Light Synthesis, Addit. Manuf., 2020, vol. 32, article no. 101018. https://doi.org/10.1016/j.addma.2019.101018

    Article  CAS  Google Scholar 

  15. Ryan, M.E. and Dutta, A., Kinetics of epoxy cure: a rapid technique for kinetic parameter estimation, Polymer, 1979, vol. 20, no. 2, pp. 203–206. https://doi.org/10.1016/0032-3861(79)90222-2

    Article  CAS  Google Scholar 

  16. Kamal, M. and Sourour, S., Kinetics and thermal characterization of thermoset cure, Polym. Eng. Sci., 1973, vol. 13, no. 1, pp. 59–64. https://doi.org/10.1002/pen.760130110

    Article  CAS  Google Scholar 

  17. Yousefi, A., Lafleur, P.G., and Gauvin, R., Kinetic studies of thermoset cure reactions: A review, Polym. Compos., 1997, vol. 18, no. 2, pp. 157–168. https://doi.org/10.1002/pc.10270

    Article  CAS  Google Scholar 

  18. Zhang, X., Applications of kinetic methods in thermal analysis: A review, Eng. Sci., 2020, vol. 14, no. 2, pp. 1–13. https://doi.org/10.30919/es8d1132

    Article  ADS  Google Scholar 

  19. Vyazovkin, S., Achilias, D., Fernandez-Francos, X., Galukhin, A., and Sbirrazzuoli, N., ICTAC Kinetics Committee recommendations for analysis of thermal polymerization kinetics, Thermochim. Acta, 2022, vol. 714, article no. 179243. https://doi.org/10.1016/j.tca.2022.179243

    Article  CAS  Google Scholar 

  20. Friedman, H.L., Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci., Part C: Polym. Symp., 1964, vol. 6, no. 1, pp. 183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  21. Ozawa, T., A new method of quantitative differential thermal analysis, Bull. Chem. Soc. Jpn., 1966, vol. 39, no. 10, pp. 2071–2085. https://doi.org/10.1246/bcsj.39.2071

    Article  CAS  Google Scholar 

  22. Kissinger, H.E., Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand., 1956, vol. 57, no. 4, pp. 217–221. https://doi.org/10.6028/jres.057.026

    Article  CAS  Google Scholar 

  23. Ishida, H. and Rodriguez, Y., Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry, Polymer, 1995, vol. 36, no. 16, pp. 3151–3158. https://doi.org/10.1016/0032-3861(95)97878-J

    Article  CAS  Google Scholar 

  24. Augustine, D., Mathew, D., and Nair, C.R., Mechanistic and kinetic aspects of the curing of phthalonitrile monomers in the presence of propargyl groups, Polymer, 2015, vol. 60, pp. 308–317. https://doi.org/10.1016/j.polymer.2015.01.055

    Article  CAS  Google Scholar 

  25. Flynn, J.H. and Wall, L.A., A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci., Part B: Polym. Lett., 1966, vol.4, no. 5, pp. 323–328. https://doi.org/10.1002/pol.1966.110040504

    Article  CAS  Google Scholar 

  26. Coats, A.W. and Redfern, J.P., Kinetic parameters from thermogravimetric data. II., J. Polym. Sci., Part B: Polym. Lett., 1965, vol. 3, no. 11, pp. 917–920. https://doi.org/10.1002/pol.1965.110031106

    Article  CAS  Google Scholar 

  27. Khawam, A., Application of solid-state kinetics to desolvation reactions, Ph. D. Thesis, Iowa: Iowa Univ., 2007. https://doi.org/10.17077/etd.vtiuca3s

  28. Khawam, A. and Flanagan, D.R., Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics, J. Phys. Chem. B, 2005, vol. 109, no. 20, pp. 10073–10080. https://doi.org/10.1021/jp050589u

    Article  PubMed  CAS  Google Scholar 

  29. Ramgobin, A., Fontaine, G., and Bourbigot, S., A case study of polyetheretherketone (II): Playing with oxygen concentration and modeling thermal decomposition of a high-performance material, Polymers, 2020, vol. 12, no. 7, article no. 1577. pp. 1–20. https://doi.org/10.3390/polym12071577

  30. Brown, M.E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H.L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H.O., Li, C.-R., Tang, T.B., Roduit, B., Malek, J., and Mitsuhashi, T., Computational aspects of kinetic analysis: Part A: the ICTAC kinetics project-data, methods and results, Thermochim. Acta, 2000, vol. 355, nos. 1–2, pp. 125–143. https://doi.org/10.1016/S0040-6031(00)00443-3

  31. Arhangel'skii, I.V., Dunaev, A.V., Makarenko, I.V., Tikhonov, N.A., Belyaev, S.S., and Tarasov, A.V., Non-Isothermal Kinetic Methods, Arkhangel’skii, I.V., Ed., Oranienstraße: Edition Open Access, 2013, vol. 1.

  32. Joshi, S.C., Liu, X.L., and Lam, Y.C., A numerical approach to the modeling of polymer curing in fibre-reinforced composites, Compos. Sci. Technol., 1999, vol. 59, no. 7, pp. 1003–1013. https://doi.org/10.1016/S0266‑3538(98)00138‑9

    Article  CAS  Google Scholar 

  33. Leistner, C., Hartmann, S., Abliz, D., and Ziegmann, G., Modeling and simulation of the curing process of epoxy resins using finite elements, Continuum Mech. Thermodyn., 2020, vol. 32, no. 2, pp. 327–350. https://doi.org/10.1007/s00161-018-0708-9

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Lee, S., Choi, C.H., Hong, I.-K., and Lee, J.W., Polyurethane curing kinetics for polymer bonded explosives: HTPB/IPDI binder, Korean J. Chem. Eng., 2015, vol. 32, no. 8, pp. 1701–1706. https://doi.org/10.1007/s11814-014-0366-y

    Article  CAS  Google Scholar 

  35. Rad, H.M., Roosta, S.T., Shariati, S.H.M., and Hosseini, S.G., Numerical simulation of HTPB resin curing process using OpenFOAM and study the effect of different conditions on its curing time, Propellants, Explos., Pyrotech., 2021, vol. 46, no. 9, pp. 1447–1457. https://doi.org/10.1002/prep.202000321

    Article  CAS  Google Scholar 

  36. Saffman, P.G., A model for inhomogeneous turbulent flow, Proc. R. Soc. London, Ser. A, 1970, vol. 317, no. 1530, pp. 417–433. https://doi.org/10.1098/rspa.1970.0125

    Article  ADS  Google Scholar 

  37. Mikić, Z. and Morse, E.C., The use of a preconditioned bi-conjugate gradient method for hybrid plasma stability analysis, J. Comput. Phys., 1985, vol. 61, no. 1, pp. 154–185. https://doi.org/10.1016/0021-9991(85)90066-X

    Article  ADS  MathSciNet  Google Scholar 

  38. Olejnik, A., Gosz, K., and Piszczyk, Ł., Kinetics of cross-linking processes of fast-curing polyurethane system, Thermochim. Acta, 2020, vol. 683, article no. 178435. https://doi.org/10.1016/j.tca.2019.178435

    Article  CAS  Google Scholar 

  39. Jiang, F. and Drummer, D., Curing kinetic analysis of acrylate photopolymer for additive manufacturing by Photo-DSC, Polymers, 2020, vol. 12, no. 5, article no. 1080, pp. 1–11. https://doi.org/10.3390/polym12051080

  40. Bessa, W., Trache, D., Derradji, M., Bentoumia, B., Tarchoun, A.F., and Hemmouche, L., Effect of silane modified microcrystalline cellulose on the curing kinetics, thermo-mechanical properties and thermal degradation of benzoxazine resin, Int. J. Biol. Macromol., 2021, vol. 180, pp. 194–202. https://doi.org/10.1016/j.ijbiomac.2021.03.080

    Article  PubMed  CAS  Google Scholar 

  41. Peng, W., Liu, Y., Liu, Z, Lu, Z., Hu, J., Zeng, K., and Yang, G., Curing kinetics study on highly efficient thermal synergistic polymerization effect between alicyclic imide moiety and phthalonitrile, Thermochim. Acta, 2018, vol. 659, pp. 27–33. https://doi.org/10.1016/j.tca.2017.09.020

    Article  CAS  Google Scholar 

  42. Gullberg, R., Computational Fluid Dynamics in OpenFOAM. Rep. TKP, 2017. 4555. https://folk.ntnu.no/ preisig/HAP_Specials/AdvancedSimulation_files/2017/ project%20reports/CFD/Rebecca%20Gullberg%20-%20CFD_Mesh_Report.pdf. Cited December, 21, 2023.

  43. Hou, J., You, B., Xu, J., Fu, T., and Wang, T., Numerical simulation and multi-objective optimization for curing process of thermosetting prepreg, Appl. Compos. Mater., 2022, vol. 29, pp. 1409–1429. https://doi.org/10.1007/s10443-022-10022-7

    Article  ADS  CAS  Google Scholar 

  44. Velić, D., Planinić, M., Tomas, S., and Bilić, M., Influence of airflow velocity on kinetics of convection apple drying, J. Food Eng., 2004, vol. 64, no. 1, pp. 97–102. https://doi.org/10.1016/j.jfoodeng.2003.09.016

    Article  Google Scholar 

  45. Heinze, S., Echtermeyer, A.T., A practical approach for data gathering for polymer cure simulations, Appl. Sci., 2018, vol. 8, no. 11, article no. 2227, pp. 1—31. https://doi.org/10.3390/app8112227

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tavangar Roosta.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, F., Roosta, S.T., Zarei, M.A. et al. Study the Process of Siloxane Curing by Experimental and Numerical Simulation. Theor Found Chem Eng 57, 1534–1551 (2023). https://doi.org/10.1134/S0040579523330047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523330047

Keywords:

Navigation