Skip to main content
Log in

Investigation of Optimal Compromise Modes of Multi-Column Rectification Unit in Isopropyl Benzene Production

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The research of optimal compromise operation modes of five-column rectification unit, designed for isopropyl benzene extraction from benzene alkylation products by propylene, at variation of feed rate to the head tower is performed. We selected two optimization criteria in the form of productivity by outlet flow from the considered system of columns with the given concentration of isopropylbenzene and energy consumption for creation of steam flow in the columns. We varied feed flow rate to the head-column. Analysis of obtained results of the step-by-step approach for determining the optimal trade-off solution made it possible to establish that the multidimensional function of achieving a trade-off solution for the entire installation is unimodal. This result justifies the application of multidimensional extremum search methods to solve the problem of obtaining the optimal compromise solution. It has been established that the dependences of control variables on the supply flow rate to the head tower are linear when the optimum compromise modes are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Lakshmanan, V.M., Kallingal, A., and Sreekumar, S., Robust control of isopropyl benzene production process using H loop shaping control scheme, J. Control Decis., 2022, pp. 1–11. https://doi.org/10.1080/23307706.2022.2146009

    Book  Google Scholar 

  2. Vovdenko, M.K., Ahmerov, E.A., Koledina, K.F., and Vovdenko, A.G., Mathematical modeling of radical-chain reaction of isopropylbenzene oxidation, J. Phys.: Conf. Ser., 2019, vol. 1368, no. 4, article no. 042020, pp. 1–7. https://doi.org/10.1088/1742-6596/1368/4/042020

  3. Yazdani, M., Zarate, P., Zavaskas, E.K., and Turskis, Z., A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems, Manage. Decis., 2019, vol. 57, no. 9, pp. 2501–2519. https://doi.org/10.1108/MD-05-2017-0458

    Article  Google Scholar 

  4. Kumar, S., Mandal, K.K., and Chakraborty, N., Optimal DG placement by multi-objective opposition based chaotic differential evolution for techno-economic analysis, Appl. Soft Comput., 2019, vol. 78, pp. 70–83. https://doi.org/10.3390/en15062267

    Article  Google Scholar 

  5. Chakraborty, S., Saha, A.K., Sharma, S., Chakraborty, R., and Debnath, S., A hybrid whale optimization algorithm for global optimization, J. Ambient Intell. Humaniz. Comput., 2023, vol. 14, no. 1, pp. 431–467. https://doi.org/10.3390/math9131477

    Article  Google Scholar 

  6. Kafarov, V.V., Metody kibernetiki v khimii i khimicheskoi tekhnologii (Cybernetics Methods in Chemistry and Chemical Technology), Moscow: Khimiya, 1985.

  7. Sheshunova, Y.V., Multi-criteria optimization systems in the agro-industrial complex, Vestn. Mord. Univ., 2017, vol. 1, no. 27, pp. 67–76. https://doi.org/10.15507/0236-2910.027.201701.067-076

    Article  Google Scholar 

  8. Smith, J.M., Optimization theory in evolution, Annu. Rev. Ecol. Evol. Syst., 1978, vol. 9, pp. 31–56. https://doi.org/10.1146/annurev.es.09.110178.000335

    Article  Google Scholar 

  9. Odu, G.O. and Charles-Owaba. O.E., Review of multi-criteria optimization methods—theory and applications, IOSR J. Eng., 2013, vol. 3, no. 10, pp. 01–14, https://doi.org/10.1080/23311916.2018.1502242

  10. Kafarov, V.V. and Glebov, M.B., Matematicheskoe modelirovanie osnovnykh processov khimicheskikh proizvodstv (Mathematical Modeling of Basic Processes of Chemical Production), Moscow: Vysshaya Shkola, 1991.

  11. Shi, T., Chun, W., Yang, A., Su, Y., Jin, S., Ren, J., and Shen, W., Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate–ethanol azeotrope, Chem. Eng. Sci., 2020, vol. 215, article no. 115373. https://doi.org/10.1016/j.ces.2019.115373

    Article  CAS  Google Scholar 

  12. Basilio, M.P., Pereira, V., Costa, H.G., Santos, M., and Ghosh, A., A systematic review of the applications of multi-criteria decision aid methods (1977-2022), Electronics, 2022, vol. 11, no. 11, article no. 1720, pp. 1–28. https://doi.org/10.3390/electronics11111720

  13. Sharma, S. and Kumar, V.A., A comprehensive review on multi-objective optimization techniques: past, present and future, Arch. Comput. Methods Eng., 2022, vol. 29, no. 7, pp. 5605–5633. https://doi.org/10.1007/s11831-022-09778-9

    Article  Google Scholar 

  14. Ibrahim, S. and Abbas, A.M., A novel optimization method for constructing cryptographically strong dynamic S-boxes, IEEE Access, 2020, vol. 8, pp. 225004–225017. https://doi.org/10.1109/ACCESS.2021.3113338

    Article  Google Scholar 

  15. Ezugwu, A.E., Shukla, A.K., Nath, R., Akinyelu, A.A., Agushaka, J.O., Chiroma, H., Muhuri, P.K., Metaheuristics: A comprehensive overview and classification along with bibliometric analysis, Artif. Intel. Rev., 2021, vol. 54, no. 6, pp. 4237–4316. https://doi.org/10.1007/s10462-020-09952-0

    Article  Google Scholar 

  16. Tanyildizi, E. and Demir, G., Golden sine algorithm: A novel math-inspired algorithm, Adv. Electr. Comput. Eng., 2017, vol. 17, no. 2, pp. 71–78. https://doi.org/10.4316/AECE.2017.02010

    Article  Google Scholar 

  17. Lämmel, S. and Shikhman, V., Optimality conditions for mathematical programs with orthogonality type constraints, Set-Valued Var. Anal., 2023, vol. 31, no. 1, article no. 9, pp. 1–21. https://doi.org/10.1007/s11228-023-00673-4

  18. Li, M., Zhao, H., Weng, X., and Han, T., Cognitive behavior optimization algorithm for solving optimization problems, Appl. Soft Comput., 2016, vol. 39, pp 199–222. https://doi.org/10.1016/j.asoc.2015.11.015

    Article  CAS  Google Scholar 

  19. Abualigah, L., Elaziz, M.A., Hussein, A.G., Alsalibi, B., Jalali, S.M.J., and Gando,I, A.H., Lightning search algorithm: a comprehensive survey, Appl. Intell., 2021, vol. 51, pp. 2353–2376. https://doi.org/10.1007/s10489-020-01947-2

    Article  Google Scholar 

  20. Ahmad, M.F., Isa, N.A.M., Lim, W.H., and Ang, K.M., Differential evolution: A recent review based on state-of-the-art works, Alexandria Eng. J., 2022, vol. 61, no. 5, pp. 3831–3872. https://doi.org/10.1016/j.aej.2021.09.013

    Article  Google Scholar 

Download references

Funding

The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (Grant no. 21-1-1-6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Efimov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, I.M., Krivosheev, V.P. & Goriunova, E.V. Investigation of Optimal Compromise Modes of Multi-Column Rectification Unit in Isopropyl Benzene Production. Theor Found Chem Eng 57 (Suppl 1), S11–S17 (2023). https://doi.org/10.1134/S0040579523070060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523070060

Keywords:

Navigation