Skip to main content
Log in

Studies on Photocatalytic Degradation for Organic Pollutants by TiO2/Au Composite and its Antibacterial Properties

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

TiO2/Au had been prepared readily from tetrabutyl titanate and chloroauric acid by in situ solvothermal method. SEM, XRD, UV-vis, FTIR, etc were used for characterizing the morphology, crystal structure, and optical performance of TiO2 and TiO2/Au. The photocatalytic degradation performance on methyl orange and antibacterial properties against Escherichia coli of TiO2 and TiO2/Au were studied. The results showed that the TiO2/Au both possessed superior photocatalytic properties under simulated or nature sunlight. The photocatalytic degradation rate of TiO2/Au on methyl orange was up to 91.57% that was obviously better than TiO2 (65.13%). Moreover, TiO2 and TiO2/Au had significant antibacterial properties against Escherichia coli, and the inhibition rate was up to 99.89%. The activity of TiO2 and TiO2/Au was tested by ESR and H2-TPR for analyzing the mechanism of the improvement of the photocatalytic activity and antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Aslam. M., Abdullah, A.Z., Rafatullah, M., and Fawad, A., Abelmoschus esculentus (Okra) seed extract for stabilization of the biosynthesized TiO2 photocatalyst used for degradation of stable organic substance in water, Environ. Sci. Pollut. Res., 2022, vol. 29, no. 27, pp. 41053–41064. https://doi.org/10.1007/s11356-021-18066-1

  2. Kubacka, A., Diez, M.S., Rojo, D., Bargiela, R., Ciordia, S., Zapico, I., Albar, J.P., Barbas, C., dos Santos, V.A.P.M., Fernández-García, M., and Ferrer, M., Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium, Sci. Rep., 2014, vol. 4, no. 1, article no. 4134, pp. 1–9. https://doi.org/10.1038/srep04134

  3. Cheng, J.-Z., Liu, L.-L., Liao, G., Shen, Z.-Q., Tan, Z.-R., Xing, Y.-Q., Li, X.-X., Yang, K., Chen, L., and Liu, S.-Y., Achieving an unprecedented hydrogen evolution rate by solvent-exfoliated CPP-based photocatalysts, J. Mater. Chem. A, 2020, vol. 8, no. 12, pp. 5890–5899.

    Article  CAS  Google Scholar 

  4. Di, J., Xia, J., Li X, Li, X., Ji, M., Xu, H., Chen, Z., and Li, H., Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation, Carbon, 2016, vol. 107, pp. 1–10. https://doi.org/10.1016/j.carbon.2016.05.028

    Article  CAS  Google Scholar 

  5. Fujishima, A. and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, vol. 238, no. 5358, pp. 37–38. https://doi.org/10.1038/238037a0

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Garcia-Garcia, S., López-Ortega, A., Zheng, Y., Nie, Y., Cho, K., Chuvilin, A., and Knez, M., Ligand-induced reduction concerted with coating by atomic layer deposition on the example of TiO2-coated magnetite nanoparticles, Chem. Sci., 2019, vol. 10, no. 7, pp. 2171–2178. https://doi.org/10.1039/C8SC04474K

    Article  CAS  PubMed  Google Scholar 

  7. GB 18466-2005: Discharge standard of water pollutants for medical organization. Beijing: China Environ. Sci. Press, 2005. https://www.chinesestandard.net/PDF/ English.aspx/GB18466-2005. Cited January 02, 2024.

  8. Gnanaprakasam, A., Sivakumar, V.M., Sivayogavalli, P.L., and Thirumarimurugan, M., Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes, Ecotoxicol. Environ. Saf., 2015, vol. 121, pp. 121–125. https://doi.org/10.1016/j.ecoenv.2015.04.043

    Article  CAS  PubMed  Google Scholar 

  9. Ishibashi, K., Fujishima, A., Watanabe, T., and Hashimoto, K., Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol., A, 2000, vol. 134, nos. 1–2, pp. 139–142. https://doi.org/10.1016/S1010-6030(00)00264-1

  10. Kütahya, C., Wang, P., Li, S., Liu, S., Li, J., Chen, Z., and Strehmel, B., Carbon dots as a promising green photocatalyst for free radical and ATRP-based radical photopolymerization with blue LEDs, Angew. Chem., Int. Ed., 2020, vol. 59, no. 8, pp. 3166–3171. https://doi.org/10.1002/anie.201912343

    Article  CAS  Google Scholar 

  11. Li, Y., Zhang, P., Wan, D., Xue, C., Zhao, J., and Shao, G., Direct evidence of 2D/1D heterojunction enhancement on photocatalytic activity through assembling MoS2 nanosheets onto super-long TiO2 nanofibers, Appl. Surf. Sci., 2020, vol. 504, article no. 144361. https://doi.org/10.1016/j.apsusc.2019.144361

    Article  CAS  Google Scholar 

  12. Nam, Y., Lim, J.H., Ko, K.C., and Lee, J.Y., Photocatalytic activity of TiO2 nanoparticles: A theoretical aspect, J. Mater. Chem. A, 2019, vol. 7, no. 23, pp. 13833–13859. https://doi.org/10.1039/C9TA03385H

    Article  CAS  Google Scholar 

  13. Patra, K.K. and Gopinath C.S., Bimetallic and plasmonic Ag–Au on TiO2 for solar water splitting: An active nanocomposite for entire visible-light-region absorption, ChemCatChem, 2016, vol. 8, no. 20, pp. 3294–3311. https://doi.org/10.1002/cctc.201600937

    Article  CAS  Google Scholar 

  14. Pham, T.-D., Lee, B.-K., and Lee, C.-H., The advanced removal of benzene from aerosols by photocatalytic oxidation and adsorption of Cu-TiO2/PU under visible light irradiation, Appl. Catal., B, 2016, vol. 182, pp. 172–183. https://doi.org/10.1016/j.apcatb.2015.09.023

    Article  CAS  Google Scholar 

  15. Sopha, H., Hromadko, L., Motola, M., and Macak, J.M., Fabrication of TiO2 nanotubes on Ti spheres using bipolar electrochemistry, Electrochem. Commun., 2020, vol. 111, article no. 106669. https://doi.org/10.1016/j.elecom.2020.106669

    Article  CAS  Google Scholar 

  16. Tao, X., Zhu, L., Wang, X., Chen, X., and Liu, X., Preparation of Zr/Y co-doped TiO2 photocatalyst and degradation performance of hydroquinone, Environ. Sci. Pollut. Res., 2022, vol. 29, no. 27, pp. 40854–40864. https://doi.org/10.1007/s11356-021-18155-1

    Article  CAS  Google Scholar 

  17. Welch, D., Buonanno, M., Grilj, V., Shuryak, I., Crickmore, C., Bigelow, A.W., Randers-Pehrson, G., Johnson, G.W., and Brenner, D.J., Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases, Sci. Rep., 2018, vol. 8, no. 1, article no. 2752, pp. 1–7. https://doi.org/10.1038/s41598-018-21058-w

  18. Xu, Q., Wang, Y., Chi, M., Hu, W., Zhang, N., and He, W., Porous polymer-titanium dioxide/copper composite with improved photocatalytic activity toward degradation of organic pollutants in wastewater: Fabrication and characterization as well as photocatalytic activity evaluation, Catalysts, 2020, vol. 10, no. 3, article no. 310, pp. 1–12. https://doi.org/10.3390/catal10030310

  19. Zhang, L., Han, B., Cheng, P., and Hu, Y.H., In-situ FTIR-DRS investigation on shallow trap state of Cu-doped TiO2 photocatalyst, Catal. Today, 2020, vol. 341, pp. 21–25. https://doi.org/10.1016/j.cattod.2018.06.049

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Huanghuai University.

Funding

This research was financially supported by the project of youth backbone teachers of Henan province (Grant no. 2017GGJS172), Henan provincial natural science foundation of China (Grant nos. 182102311053, 192102310492 and 222102110180), Key scientific research projects of colleges and universities in Henan province (Grant no. 21B150012), and the key science and technology innovation demonstration projects of Henan province (Grant nos. 191110110600 and 17702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijie Xu.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Liu, Z. Studies on Photocatalytic Degradation for Organic Pollutants by TiO2/Au Composite and its Antibacterial Properties. Theor Found Chem Eng 57, 1610–1617 (2023). https://doi.org/10.1134/S0040579523330114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523330114

Keywords:

Navigation