Skip to main content
Log in

The Study of Thermodynamic Properties of Diethylene Glycol Monobuthyl Ether with 2-Alkanols (C3–C6) with Use of PC-SAFT Modeling at Different Temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study investigated the density (ρ), speed of sound (u), and refractive index (\({n}_{{\text{D}}}\)) of binary mixtures of diethylene glycol monobuthyl ether (DEGBE) and 2-alkanols (C3–C6) at various compositions and temperatures (T = 298.15, 308.15, 318.15 K) under normal pressure. The experimental data were used to compute derived properties such as excess molar volume (\({V}_{{\text{m}}}^{{\text{E}}}\)), excess partial molar volume (\({\overline{V} }_{{\text{m}},{\text{i}}}^{{\text{E}}}), \mathrm{deviations in}\) isentropic compressibility (Δ \({K}_{{\text{s}}})\), and in refractive index (\(\Delta {n}_{D}\)). These derived properties were fitted with the Redlich–Kister polynomial equation. A digital vibrating-tube densitometer (Anton Paar DSA 5000) was used to measure the density and speed of sound of pure substances and mixtures at different temperatures. The results revealed the intermolecular interactions and structure factors of the binary mixtures. Moreover, the Perturbed Chain Statistical Association Fluid Theory (PC-SAFT) model was applied to predict the density data of binary mixtures and compare them with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. M. Almasi, A. Hernández, Experimental and theoretical studies of ethylene glycol dimethyl ether and 2-alkanol mixtures. Int. J. Thermophys. 44, 109 (2023)

    Article  ADS  Google Scholar 

  2. M. Almasi, A. Hernández, S. Pouladi, Some experimental and theoretical studies on 2-isopropoxyethanol and 1-alkanols (C6 to C10). Int. J. Thermophys. 45, 5 (2024)

    Article  ADS  Google Scholar 

  3. M. Lifi, J.P. Bazile, N. Munoz-Rujas, G. Galliero, F. Aguilar, J.L. Daridon, Density, viscosity, and derivative properties of diethylene glycol monoethyl ether under high pressure and temperature. J. Chem. Eng. Data 66, 1457–1465 (2021)

    Article  Google Scholar 

  4. S. Aznarez, M.M.E.F. de Ruiz Holgado, E.L. Arancibia, Viscosities of mixtures of 2-alkanols with tetraethyleneglycol dimethyl ether at different temperatures. J. Mol. Liq. 124, 78–83 (2006)

    Article  Google Scholar 

  5. L.I. Xinxue, X.U. Guomin, W. Yanwei, H. Yijiang, Density, viscosity, and excess properties for binary mixture of diethylene glycol monoethyl ether+ water from 293.15 to 333.15 K at atmospheric pressure. Chin. J. Chem. Eng. 17, 1009–1013 (2009)

    Article  Google Scholar 

  6. K. Kang, X. Wang, F. Yang, J.M. Prausnitz, Densities of diethylene glycol, monobutyl ether, diethylene glycol dibutyl ether, and ethylene glycol monobutyl ether from (283.15 to 363.15) K at pressures up to 60 MPa. J. Chem. Eng. Data 61, 2851–2858 (2016)

    Article  Google Scholar 

  7. S.N. Mirheydari, M. Barzegar-Jalali, B. Golmohamadi, H. Shekaari, F. Martinez, A. Jouyban, Density, speed of sound, and viscosity of diethylene glycol monoethyl ether+ N, N-dimethylformamide (ethanol, water) at T= 288.15–318.15 K. J. Chem. Eng. Data 64, 1425–1436 (2019)

    Article  Google Scholar 

  8. S. Aznarez, M.E.F. de Ruiz Holgado, E.L. Arancibia, Viscosimetric behaviour of n-alkanols with triethylene glycol monomethyl ether at different temperatures. J. Mol. Liq. 139, 131–137 (2008)

    Article  Google Scholar 

  9. D.W. Sullivan Jr., S.C. Gad, M.A. Julien, review of the nonclinical safety of Transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient. Food Chem. Toxicol. 72, 40–50 (2014)

    Article  Google Scholar 

  10. D.W. Osborne, Diethylene glycol monoethyl ether: an emerging solvent in topical dermatology products. J. Cosmet. Dermatol-Us. 10, 324–329 (2011)

    Article  Google Scholar 

  11. H. Iloukhani, K. Khanlarzadeh, M. Rakhshi, Densities, excess molar volumes, viscosities, and refractive indices of binary mixtures of n-butyl acetate with 1-chloroalkanes (C4–C8) at 298.15 K. Int. J. Thermophys. 32, 614–621 (2011)

    Article  ADS  Google Scholar 

  12. M. Almasi, H. Iloukhani, A. Hernández, New experimental data and modeling for the densities and viscosities of the 1,4-dioxane+ 1-alkanols (C6 to C10) mixtures. Int. J. Thermophys. 44, 149 (2023)

    Article  ADS  Google Scholar 

  13. A. Bemoni, H. Iloukhani, K. Khanlarzadeh, PC-SAFT model and experimental explicating interaction of binary and ternary systems of 2-ethoxyethanol, methylcyclohexane and N-methylcyclohexylamine. J. Mol. Liq. 391, 123208 (2023)

    Article  Google Scholar 

  14. F. Forghani, H. Iloukhani, K. Khanlarzadeh, Volumetric and acoustic investigation on the binary mixtures of monoethanolamine+ 1-alcohols (C3–C6) at different temperatures from experimental and theoretical points of view. J. Sol. Chem 52(4), 385–412 (2023)

    Article  Google Scholar 

  15. F. Forghani, H. Iloukhani, K. Khanlarzadeh, Experimental study and modeling using the PFP theory and the ERAS model of the excess molar volume and isentropic compressibility of dimethylbenzylamine with alkanol mixtures at different temperatures. J. Chem. Eng. Data 67, 297–304 (2022)

    Article  Google Scholar 

  16. M.D. Tehrani, H. Shi, H. Iloukhani, K. Khanlarzadeh, E. Azizi, Experimental, theoretical and computational study of binary systems of alkanolamines and alkylamines with cyclohexanol at different temperatures. J. Chem. Thermodyn. 166, 106668 (2022)

    Article  Google Scholar 

  17. S.S. Dhondge, C.P. Pandhurnekar, D.V. Parwate, Density, speed of sound, and refractive index of aqueous binary mixtures of some glycol ethers at T= 298.15 K. J. Chem. Eng. Data 55, 3962–3968 (2010)

    Article  Google Scholar 

  18. A. Pal, A. Kumar, H. Kumar, Speeds of sound and isentropic compressibilities of n-alkoxyethanols and polyethers with propylamine at 298.15 K. Int. J. Thermophys. 27, 777–793 (2006)

    Article  ADS  Google Scholar 

  19. T. Chiao, Densities and refractive indices of diethylene glycol ether-water solutions. diethylene glycol monomethyl, monoethyl, and monobutyl ethers. J. Chem. Eng. Data 6, 192–193 (1961)

    Article  Google Scholar 

  20. I. Mozo, I.G. de la Fuente, J.A. González, J.C. Cobos, Thermodynamics of mixtures containing alkoxyethanols. XXIV. Densities, excess molar volumes, and speeds of sound at (293.15, 298.15, and 303.15) K and isothermal compressibilities at 298.15 K for 2-(2-alkoxyethoxy) ethanol+ 1-butanol systems. J. Chem. Eng. Data 52, 2086–2090 (2007)

    Article  Google Scholar 

  21. P. Kaur, G.P. Dubey, FT-IR studies and excess thermodynamic properties of binary liquid mixtures 2-(2-butoxyethoxy) ethanol with 1-hexanol, 1-octanol and 1-decanol at different temperatures. J. Chem. Thermodyn. 126, 74–81 (2018)

    Article  Google Scholar 

  22. G.P. Dubey, L. Dhingra, Acoustic, volumetric, transport and spectral studies of binary liquid mixtures of 2-(2-butoxyethoxy) ethanol with amines at different temperatures. J. Chem. Thermodyn. 149, 106161 (2020)

    Article  Google Scholar 

  23. M. Almasi, Densities and viscosities of binary mixtures containing diethylene glycol and 2-alkanol. J. Chem. Eng. Data 57, 2992–2998 (2012)

    Article  Google Scholar 

  24. F. Ouaar, I. Mokbel, A. Negadi, F. Aguilar, E.A. Montero, J. Jose, L. Negadi, Vapor–liquid equilibria, density, sound velocity, and refractive index for binary mixtures containing 2-(2-ethoxyethoxy) ethanol and 1-propanol or 2-propanol or 1-butanol or 2-butanol at different temperatures. J. Chem. Eng. Data 65, 2351–2372 (2020)

    Article  Google Scholar 

  25. H. Iloukhani, M. Soleimani, K. Khanlarzadeh, The study of physico-chemical properties of binary systems consisting of N-Methylcyclohexylamine with 2-alkanols at T=(298.15–328.15) K. J. Chem. Thermodyn. 110, 110–126 (2017)

    Article  Google Scholar 

  26. M. Almasi, Densities and viscosities of binary mixtures of ethylmethylketone and 2-alkanols; application of the ERAS model and cubic EOS. Thermochim. Acta 554, 25–31 (2013)

    Article  Google Scholar 

  27. H. Iloukhani, B. Samiey, M.A. Moghaddasi, Speeds of sound, isentropic compressibilities, viscosities and excess molar volumes of binary mixtures of methylcyclohexane+ 2-alkanols or ethanol at T= 298.15 K. J. Chem. Thermodyn. 38, 190–200 (2006)

    Article  Google Scholar 

  28. S. Singh, M.N. Aznar, N. Deenadayalu, Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T=(298.15, 303.15, 308.15, and 313.15) K. J. Chem. Thermodyn. 57, 238–247 (2013)

    Article  Google Scholar 

  29. H. Zarei, S. Asadi, H. Iloukhani, Temperature dependence of the volumetric properties of binary mixtures of (1-propanol, 2-propanol and 1, 2-propanediol) at ambient pressure (81.5 kPa). J. Mol. Liq. 141, 25–30 (2008)

    Article  Google Scholar 

  30. S.B. Lomte, M.J. Bawa, M.K. Lande, B.R. Arbad, Densities and viscosities of binary liquid mixtures of 2-butanone with branched alcohols at (293.15 to 313.15) K. J. Chem. Eng. Data 54, 127–130 (2009)

    Article  Google Scholar 

  31. M. Almasi, H. Iloukhani, Densities, viscosities, and refractive indices of binary mixtures of acetophenone and 2-alkanols. J. Chem. Eng. Data 55, 1416–1420 (2010)

    Article  Google Scholar 

  32. A.K. Nain, T. Srivastava, J.D. Pandey, S. Gopal, Densities, ultrasonic speeds and excess properties of binary mixtures of methyl acrylate with 1-butanol, or 2-butanol, or 2-methyl-1-propanol, or 2-methyl-2-propanol at temperatures from 288.15 to 318.15 K. J. Mol. Liq. 149, 9–17 (2009)

    Article  Google Scholar 

  33. A. Rodriguez, J. Canosa, J. Tojo, Density, refractive index, and speed of sound of binary mixtures (diethyl carbonate+ alcohols) at several temperatures. J. Chem. Eng. Data 46, 1506–1515 (2001)

    Article  Google Scholar 

  34. J. Canosa, A. Rodríguez, B. Orge, M. Iglesias, J. Tojo, Densities, refractive indices, and derived excess properties of the system methyl acetate+ methanol+ 2-butanol at 298.15 K. J. Chem. Eng. Data 42, 1121–1125 (1997)

    Article  Google Scholar 

  35. M. Hasan, D.F. Shirude, A.P. Hiray, A.B. Sawant, U.B. Kadam, Densities, viscosities and ultrasonic velocities of binary mixtures of methylbenzene with hexan-2-ol, heptan-2-ol and octan-2-ol at T= 298.15 and 308.15 K. Fluid Phase Equilib. 252, 88–95 (2007)

    Article  Google Scholar 

  36. J. Gross, G. Sadowski, Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)

    Article  Google Scholar 

  37. J. Gross, G. Sadowski, Application of the perturbed-chain SAFT equation of state to associating systems. Ind. Eng. Chem. Res. 41, 5510–5515 (2002)

    Article  Google Scholar 

  38. J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids: the square well potential. J. Chem. Phys. 47, 2856–2861 (1967)

    Article  ADS  Google Scholar 

  39. J.A. Barker, D. Henderson, Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys. 47, 4714–4721 (1967)

    Article  ADS  Google Scholar 

  40. M.S. Wertheim, Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 35, 19–34 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  41. M.S. Wertheim, Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 35, 35–47 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  42. W.G. Chapman, G. Jackson, K.E. Gubbins, Phase equilibria of associating fluids: chain molecules with multiple bonding sites. Mol. Phys. 65, 1057–1079 (1988)

    Article  ADS  Google Scholar 

  43. W.G. Chapman, K.E. Gubbins, G. Jackson, M. Radosz, New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29, 1709–1721 (1990)

    Article  Google Scholar 

  44. S.H. Huang, M. Radosz, Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures. Ind. Eng. Chem. Res. 30, 1994–2005 (1991)

    Article  Google Scholar 

  45. A. Khoshsima, R. Shahriari, Modeling study of the phase behavior of mixtures containing non-ionic glycol ether surfactant. J. Mol. Liq. 230, 529–541 (2017)

    Article  Google Scholar 

  46. I. Domínguez, B. Gonzalez, B. Orge, C. Held, M. Voges, E.A. Macedo, Activity coefficients at infinite dilution for different alcohols and ketones in [EMpy][ESO4]: Experimental data and modeling with PC-SAFT. Fluid Phase Equilib. 424, 32–40 (2016)

    Article  Google Scholar 

  47. K. Zheng, H. Wu, C. Geng, G. Wang, Y. Yang, Y. Li, A comparative study of the perturbed-chain statistical associating fluid theory equation of state and activity coefficient models in phase equilibria calculations for mixtures containing associating and polar components. Ind. Eng. Chem. 57, 3014–3030 (2018)

    Article  Google Scholar 

  48. D. Belhadj, A. Negadi, P. Venkatesu, I. Bahadur, L. Negadi, Density, speed of sound, refractive index and related derived/excess properties of binary mixtures (furfural+ dimethyl sulfoxide),(furfural+ acetonitrile) and (furfural+ sulfolane) at different temperatures. J. Mol. Liq. 330, 115436 (2021)

    Article  Google Scholar 

  49. N. Chaudhary, A.K. Nain, Densities, speeds of sound, refractive indices, excess and partial molar properties of polyethylene glycol 200+ methyl acrylate or ethyl acrylate or n-butyl acrylate binary mixtures at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 271, 501–513 (2018)

    Article  Google Scholar 

  50. N. Chaudhary, A.K. Nain, Volumetric, ultrasonic, viscometric and refractive index studies of molecular interactions in binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with methyl acrylate at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 297, 111890 (2020)

    Article  Google Scholar 

  51. N. Chaudhary, A.K. Nain, Densities, speeds of sound, viscosities, refractive indices, excess and partial molar properties of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with formamide at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 305, 112816 (2020)

    Article  Google Scholar 

  52. D. Venkatesan, T.S. Krishna, P. Biswas, R. Dey, Densities, viscosities and excess parameters of octanol with alkyl (C1–C4) acetates at varying temperatures. J. Mol. Liq. 299, 112221 (2020)

    Article  Google Scholar 

  53. P. Droliya, A.K. Nain, Experimental and theoretical studies of acoustic and viscometric properties of binary mixtures of tetrahydrofuran with some alkyl acrylates at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 241, 549–562 (2017)

    Article  Google Scholar 

  54. I. Abala, M. Lifi, F.E.M.H. Alaoui, N. Munoz-Rujas, F. Aguilar, E.A. Montero, Experimental data and modeling of liquid density, speed of sound, refractive index and derivative properties of ternary mixtures dibutyl ether+ 1-butanol+ heptane or+ methylcyclohexane: Application of PC-SAFT equation of state. J. Chem. Thermodyn. 161, 106549 (2021)

    Article  Google Scholar 

  55. H. Makhlouf, N. Muñoz-Rujas, F. Aguilar, B. Belhachemi, E.A. Montero, I. Bahadur, L. Negadi, Density, speed of sound and refractive index of mixtures containing 2-phenoxyethanol with propanol or butanol at various temperatures. J. Chem. Thermodyn. 128, 394–405 (2019)

    Article  Google Scholar 

  56. F. Sirbu, D. Dragoescu, A. Shchamialiou, T. Khasanshin, Densities, speeds of sound, refractive indices, viscosities and their related thermodynamic properties for n-hexadecane+ two aromatic hydrocarbons binary mixtures at temperatures from 298.15 K to 318.15 K. J. Chem. Thermodyn. 128, 383–393 (2019)

    Article  Google Scholar 

  57. L. Yu, H. Dong, C. Wu, Y. Zhang, The density, refractive index, and thermodynamic behaviour of binary mixtures of 1, 3-Diethenyl-1, 1, 3, 3-tetramethyldisiloxane with aromatic hydrocarbons. J. Chem. Thermodyn. 72, 139–151 (2014)

    Article  Google Scholar 

  58. A.K. Nain, Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N, N-dimethylformamide and N,N-dimethylacetamide at different temperatures. J. Chem. Thermodyn. 60, 105–116 (2013)

    Article  Google Scholar 

  59. O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. Res. 40, 345–348 (1948)

    Article  Google Scholar 

  60. P.R. Bevington, D.K. Robinson, J.M. Blair, A.J. Mallinckrodt, S. McKay, Data reduction and error analysis for the physical sciences. Comput. Phys. 7, 415–416 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bu – Ali University for providing financial support for conducting this study.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Hossein Iloukhani and Khatereh Khanlarzadeh wrote the main manuscript text. Fattane Chegini did the experiments and prepared figures and tables. figures 1-3. All authors reviewed the manuscript."

Corresponding author

Correspondence to Hossein Iloukhani.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2644 KB)

Supplementary file2 (DOCX 45 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chegini, F.P., Iloukhani, H. & Khanlarzadeh, K. The Study of Thermodynamic Properties of Diethylene Glycol Monobuthyl Ether with 2-Alkanols (C3–C6) with Use of PC-SAFT Modeling at Different Temperatures. Int J Thermophys 45, 58 (2024). https://doi.org/10.1007/s10765-024-03353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03353-z

Keywords

Navigation