Skip to main content
Log in

Russian Climate Research in 2019–2022

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of Russian studies of climate and its changes (published in 2019–2022) are presented based on a review prepared for the National Report on Meteorology and Atmospheric Sciences for the 28th General Assembly of the International Union of Geodesy and Geophysics (Berlin, Germany, July 11–20, 2023).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Abida, A., Aldeco, L.S., Alfaro, E.J., et al., Regional climates, Bull. Am. Meteorol. Soc., 2020, vol. 101, no. 8, pp. S321–S420.

    Article  Google Scholar 

  2. Abram, N., Adler, C., Bindoff, N.L., et al., Summary for policymakers, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Pörtner, H.-O., Eds., Cambridge: Cambridge Univ. Press, 2019, pp. 3–35.

    Google Scholar 

  3. Adler, C., Wester, P., Bhatt, I., et al., Mountains, in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Pörtner, H.-O., Eds., Cambridge: Cambridge Univ. Press, 2022, pp. 2273–2318.

    Google Scholar 

  4. Akaev, A.A. and Davydova, O.I., A mathematical description of selected energy transition scenarios in the 21st century, intended to realize the main goals of the, Paris: Climate Agreement, Energies, 2021, vol. 14, p. 2558. https://doi.org/10.3390/en14092558

    Article  CAS  Google Scholar 

  5. Akaev, A.A. and Davydova, O.I., The Paris Agreement on Climate is coming into force: Will the great energy transition take place?, Herald Russ. Acad. Sci., 2020, vol. 90, no. 5, pp. 588–599.

    Article  Google Scholar 

  6. Akperov, M., Rinke, A., Mokhov, I.I., et al., Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX), Global Planet. Change, 2019, vol. 182, p. 103005.

    Article  Google Scholar 

  7. Akperov, M., Semenov, V.A., Mokhov, I.I., et al., Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations, Environ. Res. Lett., 2020, vol. 15, p. 024009.

    Article  ADS  Google Scholar 

  8. Akperov, M., Zhang, W., Miller, P.A., et al., Responses of Arctic cyclones to biogeophysical feedbacks under future warming scenarios in a regional Earth system model, Environ. Res. Lett., 2021, vol. 16, p. 064076. https://doi.org/10.1088/1748-9326/ac0566

    Article  ADS  Google Scholar 

  9. Akperov, M.G., Eliseev, A.V., Mokhov, I.I., et al., Wind energy potential in the Arctic and subarctic regions and its projected change in the 21st century based on regional climate model simulations, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 6, pp. 428–436.

    Article  Google Scholar 

  10. Akperov, M.G., Mokhov, I.I., Dembitskaya, M.A., et al., Lapse rate peculiarities in the Arctic from reanalysis data and model simulations, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 2, pp. 97–102.

    Article  Google Scholar 

  11. Aleksandrovskii, A., Klimenko, V., Fedotova, E., et al., Estimation of hydropower plants energy characteristics change under the influence of climate factors, Adv. Eng. Res., 2020, vol. 191, pp. 7–13.

    Google Scholar 

  12. Alekseev, G.V., Glok, N.I., Vyazilova, A.E., et al., Impact of tropical ocean surface temperature on Antarctic sea ice during global warming, Led Sneg, 2019, vol. 59, no. 2, pp. 213–221.

    Google Scholar 

  13. Aleshina, M.A. and Semenov, V.A., Changes in precipitation characteristics over Russia in XX–XXI centuries from CMIP6 models ensemble, Fundam. Prikl. Klimatol., 2022, vol. 8, no. 4, pp. 424–440.

    Google Scholar 

  14. Aleshina, M.A., Semenov, V.A., and Chernokulsky, A.V., A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data, Environ. Res. Lett., 2021, vol. 16, p. 105004. https://doi.org/10.1088/1748-9326/ac1cba

    Article  ADS  Google Scholar 

  15. Alexandrov, D.V., Bashkirtseva, I.A., and Ryashko, L.B., Anomalous climate dynamics induced by multiplicative and additive noises, Phys. Rev. E, 2020a, vol. 102, no. 1, p. 012217.

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  16. Alexandrov, D.V., Bashkirtseva, I.A., and Ryashko, L.B., How random noise induces large-amplitude oscillations in an El Niño model, Phys. D (Amsterdam, Neth.), 2022, vol. 440, p. 133468.

    Google Scholar 

  17. Alexandrov, D.V., Bashkirtseva, I.A., and Ryashko, L.B., Variability in the noise-induced modes of climate dynamics, Phys. Lett. A, 2020b, vol. 384, no. 19, p. 126411.

    Article  MathSciNet  CAS  Google Scholar 

  18. Alexandrov, D.V., Bashkirtseva, I.A., Crucifix, M., and Ryashko, L.B., Nonlinear climate dynamics: from deterministic behaviour to stochastic excitability and chaos, Phys. Rep., 2021, vol. 902, pp. 1–60.

    Article  ADS  MathSciNet  Google Scholar 

  19. Alexandrov, G.A., Brovkin, V.A., Kleinen, T., and Yu, Z., The capacity of northern peatlands for long-term carbon sequestration, Biogeosciences, 2020, vol. 17, no. 1, pp. 47–54.

    Article  ADS  CAS  Google Scholar 

  20. Alexandrov, G.A., Ginzburg, V.A., Romanovskaya, A.A., and Insarov, G.E., CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario, Clim. Change, 2021, vol. 169, nos. 3–4, Article 42.https://doi.org/10.1007/s10584-021-03292-w

  21. Allan R.P., Arias, P.A., Berger, S., et al., Summary for policymakers, in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V., et al., Eds., Cambridge: Cambridge Univ. Press, 2021, pp. 3–32. https://doi.org/10.1017/9781009157896.001

  22. Allan, R.P., et al., Advances in understanding large-scale responses of the water cycle to climate change, Ann. New York Acad. Sci., 2020, vol. 1472, no. 1, pp. 49–75.

    Article  ADS  Google Scholar 

  23. Anisimov, O. and Zimov, S., Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling, Ambio, 2021, vol. 50, pp. 2050–2059.

    Article  ADS  PubMed  CAS  Google Scholar 

  24. Anisimov, O.A. and Volodin, E.M., Climate effect of methane emission on the East Siberian Arctic shelf, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 10, pp. 758–766.

    Article  Google Scholar 

  25. Anisimov, O.A., Zimov, S.A., Volodin, E.M., and Lavrov, S.A., Methane emission in the Russian permafrost zone and evaluation of its impact on global climate, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 377–385.

    Article  Google Scholar 

  26. Arzhanov, M.M., Malakhova, V.V., and Mokhov, I.I., Modeling thermal regime and evolution of the methane hydrates stability zone of the Yamal Peninsula permafrost, Permafrost Periglacial Processes, 2020, vol. 31, no. 4, pp. 487–496.

    Article  Google Scholar 

  27. Babiker, M., Berndes, G., Blok, K., et al., Cross-sectoral perspectives, in IPCC Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Shukla, P.R., Eds., Cambridge: Cambridge Univ. Press, 2022, pp. 1245–1354.

    Google Scholar 

  28. Babina, E.D. and Semenov, V.A., Intramonthly variability of daily surface air temperature in Russia in 1970–2015, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 8, pp. 513–522.

    Article  Google Scholar 

  29. Bagatinsky, V.A. and Diansky, N.A., Contributions of climate changes in temperature and salinity to the formation of North Atlantic thermohaline circulation trends in 1951–2017, Moscow Univ. Phys. Bull., 2002, vol. 77, no. 3, pp. 564–580.

    Article  ADS  Google Scholar 

  30. Bagatinsky, V.A. and Diansky, N.A., Variability of the North Atlantic thermohaline circulation in different phases of the Atlantic multidecadal oscillation from ocean objective analyses and reanalyses, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 2, pp. 208–219.

    Article  Google Scholar 

  31. Bardin, M.Yu. and Platova, T.V., Cold waves over the European part of Russia: Structure, circulation conditions, and changes in seasonal statistics, Fundam. Prikl. Klimatol., 2022, vol. 8, no. 3, pp. 5–30.

    Google Scholar 

  32. Bardin, M.Yu. and Platova, T.V., Long-period variations in extreme temperature statistics in Russia as linked to the changes in large-scale atmospheric circulation and global warming, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 12, pp. 791–801.

    Article  Google Scholar 

  33. Bardin, M.Yu., Platova, T.V., and Samokhina, O.F., Variability of anticyclonic activity in temperate latitudes of the Northern Hemisphere, Fundam. Prikl. Klimatol., 2022, vol. 3, pp. 32–58.

    Google Scholar 

  34. Bardin, M.Yu., Ran’kova, E.Ya., Platova, T.V., et al., Modern surface climate change as inferred from routine climate monitoring data, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 317–329.

    Article  Google Scholar 

  35. Bashmakov, I.A., Nilsson, L.J., Acquaye, A., et al., Industry, in IPCC Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Shukla, P.R., , Eds., Cambridge: Cambridge Univ. Press, 2022, pp. 1161–1244.

    Google Scholar 

  36. Bashmakov, I.A., Strategy of low-hydrocarbon development of the Russian Economy, Vopr. Ekon., 2020, no. 7, pp. 51–74.

  37. Bashmakov, I.A., The scale of efforts needed to decarbonize global industry, Vopr. Ekon. 2022, vol. 8, no. 2, pp. 151–174.

    Google Scholar 

  38. Bednar-Friedl, B., Biesbroek, R., Schmidt, D.N., et al., Europe, in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Pörtner, H.-O., Eds., Cambridge: Cambridge Univ. Press, 2022, pp. 1817–1927.

    Google Scholar 

  39. Bekryaev, R.V., Interrelationships of the North Atlantic multidecadal climate variability characteristics, Russ. J. Earth Sci., 2019, vol. 19, no. 3. https://doi.org/10.2205/2018ES000653

  40. Bezverkhnii, V.A., On the 100 000-year rhythmicity in geodynamics and the paleoclimate, Izv., Phys. Solid Earth, 2019b, vol. 55, no. 3, pp. 488–495.

    Article  Google Scholar 

  41. Bezverkhnii, V.A., The 100 000-year periodicity in glacial cycles and oscillations of World Ocean level, Izv., Atmos. Ocean. Phys., 2019a, vol. 55, no. 4, pp. 334–340.

    Article  Google Scholar 

  42. Biskaborn, B.K., Smith, S.L., Noetzli, J., et al., Permafrost is warming at a global scale, Nat. Commun., 2019, vol. 10, p. 264.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Bokuchava, D.D. and Semenov, V.A., The role of natural fluctuations and factors of external influence on climate in the warming of the mid-20th century in the Northern Hemisphere, Led Sneg, 2022, vol. 62, no. 3, pp. 455–474.

    Google Scholar 

  44. Bondur, V.G., Mokhov, I.I., Voronova, O.S., and Sitnov, S.A., Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes, Dokl. Earth Sci., 2020b, vol. 492, no. 1, pp. 370–375.

    Article  ADS  CAS  Google Scholar 

  45. Bondur, V.G., Voronova, O.S., Cherepanova, E.V., Tsidilina, M.N., and Zima, A.L., Spatiotemporal analysis of multi-year wildfires and emissions of trace gases and aerosols in Russia based on satellite data, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 12, pp. 1457–1469.

    Article  Google Scholar 

  46. Bondur, V.G., Voronova, O.S., Gordo, K.A., and Zima, A.L., Satellite monitoring of the variability of wildfire areas and emissions of harmful gas components into the atmosphere for various regions of Russia over a 20-year period, Dokl. Earth Sci., 2021, vol. 500, no. 2, pp. 890–894.

    Article  ADS  CAS  Google Scholar 

  47. Borzenkova, I.I., Ershova, A.A., Zhil’tsova, E.L., and Shapovalova, K.O., Arctic sea ice in the face of current and past climate changes, Led Sneg, 2021, vol. 61, no. 4, pp. 533–546.

    Google Scholar 

  48. Brierley, C.M., Zhao, A., Harrison, S.P., et al., Large-scale features and evaluation of the PMIP4-CMIP6 mid-Holocene simulations, Clim. Past, 2020, vol. 16, no. 5, pp. 1847–1872.

    Article  Google Scholar 

  49. Brodowsky, C., Sukhodolov, T., Feinberg, A., et al., Modeling the sulfate aerosol evolution after recent moderate volcanic activity, 2008–2012, J. Geophys. Res.: Atmos., 2021, vol. 126, p. e2021JD035472. https://doi.org/10.1029/2021JD035472

  50. Brown, J.R., Brierley, C.M., An, S.-I., et al., Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models, Clim. Past, 2020, vol. 16, no. 5, pp. 1777–1805.

    Article  Google Scholar 

  51. Cabeza, L.F., Bai, Q., Kihila, J.M., et al., Buildings, in IPCC Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Shukla, P.R., , Eds., Cambridge: Cambridge Univ. Press, 2022, pp. 953–1048.

    Google Scholar 

  52. Callaghan, T.V., et al., Improving dialogue among researchers? local and indigenous peoples and decision-makers to address issues of climate change in the north, Ambio, 2020, vol. 49, no. 6, pp. 1161–1178.

    Article  ADS  PubMed  Google Scholar 

  53. Canadell, J.G., Monteiro, P.M.S., Costa, M.H., et al., Global carbon and other biogeochemical cycles and feedbacks, in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V., Eds., Cambridge: Cambridge Univ. Press, 2021, pp. 673–816.

    Google Scholar 

  54. Caretta, M.A., Mukherji, A., Arfanuzzaman, M., et al., Water, in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Pörtner, H.-O., Eds., Cambridge: Cambridge Univ. Press, 2022, pp. 551–712.

    Google Scholar 

  55. Chen, J., John, R., Yuan, J., et al., Sustainability challenges for the social–environmental systems across the Asian drylands belt, Environ. Res. Lett., 2022, vol. 17, no. 2, p. 023001. https://doi.org/10.1088/1748-9326/ac472f

    Article  ADS  Google Scholar 

  56. Chernokulsky, A., Kozlov, F., Zolina, O., et al., Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades, Environ. Res. Lett., 2019, vol. 14, p. 045001. https://doi.org/10.1088/1748-9326/aafb82

    Article  ADS  CAS  Google Scholar 

  57. Chernokulsky, A., Kurgansky, M., Mokhov, I.I., et al., Tornadoes in Northern Eurasia: From the middle age to the information era, Mon. Weather Rev., 2020, pp. 3081–3110. https://doi.org/10.1175/MWR-D-19-0251.1

  58. Chernokulsky, A.V., Eliseev, A.V., Kozlov, F.A., et al., Atmospheric severe convective events in Russia: Changes observed from different data, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 5, pp. 343–354.

    Article  Google Scholar 

  59. Chernokulsky, A.V., Kurgansky, M., Mokhov, I.I., et al., Tornadoes in the Russian regions, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 2, pp. 69–82.

    Article  Google Scholar 

  60. Chilingarov, A.N., Mikheev, V.L., and Sychev, Yu.F., Towards the initiative of the Fifth International Polar Year, Gidrometeorol. Ekol., 2022, no. 66, pp. 104–109.

  61. Colman, R. and Soldatenko, S., Understanding the links between climate feedbacks, variability and change using a two-layer energy balance model, Clim. Dyn., 2020, vol. 54, nos. 7–8, pp. 3441–3459.

    Article  Google Scholar 

  62. Cooper, A., Turney, C., Palmer, J., et al., A global environmental crisis 42,000 years ago, Science, 2021, vol. 371, pp. 811–818.

    Article  PubMed  Google Scholar 

  63. Dalin, P., Perminov, V., Pertsev, N., and Romejko, V., Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds, J. Geophys. Res.: Atmos., 2020, vol. 125, p. e2019JD030814. https://doi.org/10.1029/2019JD030814

  64. Danilov-Danil’yan, V.I., Kattsov, V.M., and Porfir’ev, B.N., The problem of climate change: The field of convergence and interaction between natural sciences and the sociohumanities, Herald Russ. Acad. Sci., 2020, vol. 90, no. 10, pp. 577–587.

    Article  Google Scholar 

  65. Datsenko, N.M., Sonechkin, D.M., Yang, B., et al., Comparative analysis of spectra of the 2000-year reconstructions of average surface air temperature in the Northern Hemisphere, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 10, pp. 651–657.

    Article  Google Scholar 

  66. Denisov, S.N., Eliseev, A.V., and Mokhov, I.I., Contribution of natural and anthropogenic emissions of CO2 and CH4 to the atmosphere from the territory of Russia to global climate changes in the twenty-first century, Dokl. Earth Sci., 2019, vol. 488, no. 1, pp. 1066–1071.

    Article  ADS  CAS  Google Scholar 

  67. Denisov, S.N., Eliseev, A.V., and Mokhov, I.I., Model estimates for contribution of natural and anthropogenic CO2 and CH4 emissions into the atmosphere from the territory of Russia, China, Canada, and the USA to global climate change in the 21st century, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 10, pp. 735–747.

    Article  Google Scholar 

  68. Dhakal, S., Minx, J.C., Toth, F.L., et al., Emissions trends and drivers supplementary material, in IPCC Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Shukla, P.R., , Eds., Cambridge: Cambridge Univ. Press, 2022, pp. 215–294.

    Google Scholar 

  69. Diansky, N.A. and Bagatinsky, V.A., Thermohaline structure of waters in the North Atlantic in different phases of the Atlantic multidecadal oscillation, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 6, pp. 628–639.

    Article  Google Scholar 

  70. Diansky, N.A., Solomonova, I.V., and Gusev, A.V., Prognostic assessments of climate change in the Arctic based on a combined scenario, Ross. Arkt., 2019, no. 4, pp. 24–33.

  71. Diansky, N.A., Solomonova, I.V., and Gusev, A.V., Prognostic assessments of climate change in the Arctic based on a combined scenario, Ross. Arkt., 2019, no. 4, pp. 24–33.

  72. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2018 god (Report on Climate Features in the Russian Federation for 2018), Moscow: Rosgidromet. 2019.

  73. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2019 god (Report on Climate Features in the Russian Federation for 2019), Moscow: Rosgidromet. 2020.

  74. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2020 god (Report on Climate Features in the Russian Federation for 2020), Moscow: Rosgidromet. 2021.

  75. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2021 god (Report on Climate Features in the Russian Federation for 2021), Moscow: Rosgidromet. 2022.

  76. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2022 god (Report on Climate Features in the Russian Federation for 2022), Moscow: Rosgidromet. 2023.

  77. Douville, H., Raghavan, K., Renwick, J., et al., Water cycle changes, in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte V., Eds., Cambridge: Cambridge Univ. Press, 2021, pp. 1055–1210.

    Google Scholar 

  78. Dymnikov, V.P., Kulyamin, D.V., and Ostanin, P.A., Coupled Earth’s thermosphere–ionosphere global dynamics model, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 3, pp. 241–152.

    Article  Google Scholar 

  79. Edel’geriev R.S.Kh., et al., Global’nyi klimat i pochvennyi pokrov Rossii: proyavleniya zasukhi, mery preduprezhdeniya, bor’by, likvidatsiya posledstvii i adaptatsionnye meropriyatiya (sel’skoe i lesnoe khozyaistvo). Natsional’nyi doklad (Global Climate and Soil Cover in Russia: Manifestations of Drought, Prevention and Control Measures, Mitigation of Consequences, and Adaptation Measures (Agriculture and Forestry). National Report), Moscow: MBA, 2021, vol. 3.

  80. Edel’geriev, R.S.Kh. and Romanovskaya, A.A., New approaches to the adaptation to climate change: The Arctic zone of Russia, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 305–316.

    Article  Google Scholar 

  81. Ekaikin, A.A., Lipenkov, V.Ya., and Chikhachev, K.B., Climate signal preservation in ancient ice layers of Dome B (Antarctica), Led Sneg, 2021, vol. 61, no. 1, pp. 5–13.

    Google Scholar 

  82. Eliseev, A.V. and Vasil’eva, A.V., Wildfires: Observation data and simulation, Fundam. Prikl. Klimatol., 2020, vol. 3, pp. 73–119.

    Google Scholar 

  83. Eliseev, A.V., Ploskov, A.N., Chernokulsky, A.V., and Mokhov, I.I., A correlation between lightning flash frequencies and the statistical characteristics of convective activity in the atmosphere, Dokl. Earth Sci., 2019, vol. 485, no. 1, pp. 273–278.

    Article  ADS  CAS  Google Scholar 

  84. Eliseev, A.V., Zhang, M., Gizatullin, R.D., et al., Impact of sulfur dioxide on the terrestrial carbon cycle, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 1, pp. 38–49.

    Article  Google Scholar 

  85. Fadeev, R.Yu., Tolstykh, M.A., and Volodin, E.M., Climate version of the SL-AV global atmospheric model: Development and preliminary results, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 1, pp. 13–22.

    Article  Google Scholar 

  86. Faleev, M.I., Tsybikov, N.A., and Sidorovich, T.I., Global climate change as a factor of intensified natural and anthropogenic challenges to the population and the environment, Tekhnol. Grazhdanskoi Bezop., 2022, vol. 19, no. 2, pp. 4–10.

    Google Scholar 

  87. Frolov, A.V., Dynamic–stochastic modeling of long-term variations in river runoff, Water Resour., 2021, vol. 48, no. 6, pp. 483–493.

    Article  Google Scholar 

  88. Frolov, I.E., Kulakov, M.Yu., and Fil’chuk, K.V., Ice balance in the Arctic Ocean in 1979–2019 (according to po modeling data), Led Sneg, 2022, vol. 62, no. 1, pp. 113–124.

    Google Scholar 

  89. Galin, V.Ya. and Dymnikov, V.P., Dynamic–stochastic parametrization of cloudiness in the general circulation model of the atmosphere, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 5, pp. 381–385.

    Article  Google Scholar 

  90. Gavrilov, A., Seleznev, A., Mukhin, D., et al., Linear dynamical modes as new variables for data-driven ENSO forecast, Clim. Dyn., 2019, vol. 52, nos. 3–4, pp. 2199–2216.

    Article  Google Scholar 

  91. Gelfan, A.N., Gusev, E.M., Kalugin, A.S., et al., Runoff of Russian rivers under current and projected climate change: A review 2. Climate change impact on the water regime of Russian rivers in the XXI century, Water Resour., 2022, vol. 49, no. 3, pp. 351–365.

    Article  CAS  Google Scholar 

  92. Georgiadi, A.G. and Groisman, P.Y., Long-term changes of water flow, water temperature and heat flux of two largest Arctic rivers of European Russia, Northern Dvina and Pechora, Environ. Res. Lett., 2022, vol. 8, p. 08500.https://doi.org/10.1088/1748-9326/ac82c1

  93. Geraskina, A.P., Tebenkova, D.N., Ershov, D.V., et al., Wildfires as a factor of loss of biodiversity and forest ecosystem functions, For. Sci. Issues, 2022, vol. 5, no. 1, pp. 1–70.

    Google Scholar 

  94. Ginzburg, A.S. and Demchenko, P.F., Anthropogenic meso-meteorological feedbacks: A review of a recent research, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 6, pp. 573–590.

    Article  Google Scholar 

  95. Ginzburg, A.S., Aleksandrov, G.A., and Chernokulsky, A.V., Climatic criteria of the need for preventive adaptation, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 6, pp. 536–544.

    Article  Google Scholar 

  96. Ginzburg, V.A., Kostrykin, S.V., Ryaboshapko, A.G., et al., Conditions for Stabilization of Average Global Surface Temperature at the Levels of +2°C and +1.5°C by the geoengineering method based on stratospheric aerosols, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 345–352.

    Article  Google Scholar 

  97. Global’nyi klimat i pochvennyi pokrov Rossii: opustynivanie i degradatsiya zemel', institutsional’nye, infrastrukturnye, tekhnologicheskie mery adaptatsii (sel’skoe i lesnoe khozyaistvo). Natsional’nyi doklad (Global Climate and Soil Cover in Russia: Desertification and Land Degradation, Institutional, Infrastructural, Technological Adaptation Measures (Agriculture and Forestry). National Report), Edel’geriev, R.S.Kh., et al., Eds., Moscow: Izdatel’stvo MBA, 2019, vol. 2.

  98. Gochakov, A.V., Antokhina, O.Yu., Krupchatnikov, V.N., and Martynova, Yu.V., Long-term variability of Rossby wave breaking in the subtropical jet stream area, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 2, pp. 79–88.

    Article  Google Scholar 

  99. Golub, M., Thiery, W., Marcé, R., et al., A framework for ensemble modelling of climate change impacts on lakes worldwide: The ISIMIP lake sector, Geosci. Model Dev, 2022, vol. 15, pp. 4597–4623.

    Article  ADS  CAS  Google Scholar 

  100. Golubenko, K., Usoskin, I., Mironova, I., Karagodin, A., and Rozanov, E., Natural sources of ionization and their impact on atmospheric electricity, Geophys. Res. Lett., 2020, vol. 47, no. 12, e2020GL088619.

  101. Grant, L., Vanderkelen, I., Gudmundsson, L., et al., Attribution of global lake systems change to anthropogenic forcing, Nat. Geosci., 2021, vol. 14, no. 11, pp. 849–854.

    Article  ADS  CAS  Google Scholar 

  102. Grigor’eva, E.A. and Revich, B.A., Health risks for the Russian population from weather extremes in 2010–2020. Part 2: Floods, typhoons, freezing rains, and droughts, Probl. Anal. Riska, 2021a, vol. 18, no. 3, pp. 10–31.

    Article  Google Scholar 

  103. Grigorieva, E.A. and Revich, B.A., Health risks to the Russian population from temperature extremes at the beginning of the XXI century, Atmosphere, 2021b, vol. 12, no. 10, p. 1331.

    Article  ADS  CAS  Google Scholar 

  104. Grigorieva, V. and Gulev, S.K., Wave climate in Subarctic seas from voluntary observing ships, Russ. J. Earth Sci., 2020, no. 6, p. ES6015.

  105. Gruzdev, A.N. and Bezverkhny, V.A., Analysis of solar cycle-like signal in the North Atlantic Oscillation index, J. Atmos. Sol.-Terr. Phys., 2019, vol. 187, pp. 53–62.

    Article  ADS  Google Scholar 

  106. Gulev, S.K., Thorne, P.W., Ahn, J., et al., Changing state of the climate system, in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte, V., Eds., Cambridge: Cambridge Univ. Press, 2021, pp. 287–422.

    Google Scholar 

  107. Gurlev, I.V., Makosko, A.A., and Malygin, I.G., Analysis of the state and development of the transport system of the Northern Sea Route, Arkt.: Ekol. Ekon., 2022, vol. 12, no. 2, pp. 258–270.

    Google Scholar 

  108. Gushchina, D., Kolennikova, M., Dewitte, B., and Yeh, S.W., On the relationship between ENSO diversity and the ENSO atmospheric teleconnection to high-latitudes, Int. J. Climatol., 2022, vol. 42, no. 2, pp. 1303–1325.

    Article  Google Scholar 

  109. Gushchina, D.Yu., Kalinovskaya, M.V., and Matveeva, T.A., Effects of the Pacific decadal oscillation on the characteristics of two types of El Niño under possible climate change, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 10, pp. 683–693.

    Article  Google Scholar 

  110. Hock, R., Rasul, G., Adler, C., et al., High mountain areas, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Pörtner, H.-O., et al., Eds., Cambridge: Cambridge Univ. Press, 2019, pp. 131–202. https://doi.org/10.1017/9781009157964.004

  111. Ilin, N.V., Slyunyaev, N.N., and Mareev, E.A., Toward a realistic representation of global electric circuit generators in models of atmospheric dynamics, J. Geophys. Res.: Atmos., 2020, vol. 125, no. 6, p. e2019JD032130.

  112. Insarov, G.E., Mendes, K.L., Semenov, S.M., and Yanda, P.Z., The concept of risk and visualization of its changes in reports of the Intergovernmental Panel on Climate Change, Fundam. Prikl. Klimatol., 2020, vol. 2, pp. 6–34.

    Google Scholar 

  113. Ivanov, A.L., Bolotov, A.G., Desyatkin, R.V., et al., Zemlepol’zovanie Rossii v usloviyakh izmeneniya global’nogo klimata i bespretsedentnykh sotsial’no-ekonomicheskikh vyzovov: sostoyanie pochvennogo (zonal’nogo) pokrova, tendentsii izmeneniya, degradatsiya, metodologiya ucheta, prognozy (Land Use in Russia During Global Climate Change and Unprecedented Social and Economic Challenges: The State of Soil (Zonal) Cover, Trends, Degradation, Methodology, and Forecasts), Moscow: MBA, 2022.

  114. Izhitskiy, A.S., Kirillin, G.B., Goncharenko, I.V., et al., The world’s largest heliothermal lake newly formed in the Aral Sea basin, Environ. Res. Lett., 2021, vol. 16, p. 115009.

    Article  ADS  Google Scholar 

  115. Izmenenie klimata i ekonomika Rossii: tendentsii, stsenarii, prognozy (Climate Change and the Russian Economy: Tendencies, Scenarios, and Forecasts), Porfir’ev, B.N. and Danilova-Danil’yan, V.I., Eds., Moscow: Nauchnyi konsul’tant, 2002.

  116. Jakovlev, A.R. and Smyshlyaev, S.P., Impact of the Southern Oscillation on Arctic stratospheric dynamics and ozone layer, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 1, pp. 86–98.

    Article  Google Scholar 

  117. Jia, G., Shevliakova, E., Artaxo, P., et al., Land–climate interactions, in Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, Shukla, R.P., et al., Eds., 2019, pp. 131–247. https://doi.org/10.1017/9781009157988.004

  118. Kageyama, M., Harrison, S.P., Kapsch, M.-L., et al., The PMIP4 last glacial maximum experiments: Preliminary results and comparison with the PMIP3 simulations, Clim. Past, 2021b, vol. 17, no. 3, pp. 1065–1089.

    Article  Google Scholar 

  119. Kageyama, M., Sime, L.C., Sicard, M., et al., A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: Sea ice data compilation and model differences, Clim. Past, 2021a, vol. 17, no. 1, pp. 37–62.

    Article  Google Scholar 

  120. Karagodin, A., Mironova, I., Golubenko, K., et al., The representation of ionospheric potential in the global chemistry–climate model SOCOL, Sci. Total Environ., 2019, vol. 697, p. 134172.

    Article  ADS  PubMed  CAS  Google Scholar 

  121. Karagodin-Doyennel, A., Rozanov, E., and Sukhodolov, T., Iodine chemistry in the chemistry–climate model SOC-OL-AERV2-I, Geosci. Model Dev., 2021, vol. 14, no. 10, pp. 6623–6645.

    Article  ADS  Google Scholar 

  122. Kattsov, V.M., Khlebnikova, E.I., Shkol’nik, I.M., and Rudakova, Yu.L., Probabilistic regional climate projecting as a basis for the development of adaptation programs for the economy of the Russian Federation, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 330–338.

    Article  Google Scholar 

  123. Kattsov, V.M., Pavlova, T.V., Govorkova, V.A., et al., Scenario forecasts of climate change in the territory Russia in the XXI century on the basis of ensemble calculations with CMIP6 models, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2022, no. 604, pp. 5–54.

  124. Kattsov, V.M., Shkol’nik, I.M., Pavlova, V.N., et al., Development of a technology for probabilistic forecasting of regional climate in Russia and respective scenario forecasts of changes in climate impacts on economic sectors. Part. 2: Climate impact assessments, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 2019, no. 593, pp. 6–52.

  125. Khlebnikova, E.I., Rudakova, Yu.L., and Shkol’nik, I.M., Changes in precipitation regime over the territory of Russia: Data of regional climate modeling and observations, Russ. Meteorol. Hydrol., 2019b, vol. 44, no. 7, pp. 431–439.

    Article  Google Scholar 

  126. Khlebnikova, E.I., Rudakova, Yu.L., Sall’, I.A., et al., Changes in indicators of temperature extremes in the 21st century: Ensemble projections for the territory of Russia, Russ. Meteorol. Hydrol., 2019a, vol. 44, no. 3, pp. 159–168.

    Article  Google Scholar 

  127. Kislov, A.V. and Morozova, P.A., Level variations in the Caspian Sea under different climate conditions by the data of simulation under CMIP6 project, Water Resour., 2021, vol. 48, no. 6, pp. 844–853.

    Article  CAS  Google Scholar 

  128. Kislov, A.V. and Surkova, G.V., The impact of global warming on Russia’s climate resources, Ekonomika, Nalogi. Pravo, 2021, vol. 14, no. 4, pp. 6–14.

    Google Scholar 

  129. Klimat Arktiki: protsessy i izmeneniya (The Arctic Climate: Processes and Changes), Mokhov, I.I. and Semenov, V.A., Eds., Moscow: Fizmatkniga, 2022.

    Google Scholar 

  130. Klimenko, V.V. and Fedotova, E.V., Russian hydropower under the global climate change, Dokl. Phys., 2019, vol. 64, no. 1, pp. 39–43.

    Article  ADS  CAS  Google Scholar 

  131. Klimenko, V.V., Ginzburg, A.S., Fedotova, E.V., and Tereshin, A.G., Heat waves: A new danger for the Russian power system, Dokl. Phys., 2020, vol. 65, no. 9, pp. 349–354.

    Article  ADS  CAS  Google Scholar 

  132. Klimenko, V.V., Klimenko, A.V., and Tereshin, A.G., From Rio to Paris via Kyoto: How the efforts to protect the global climate affect the world energy development, Thermal Eng., 2019, vol. 66, no. 11, pp. 769–778.

    Article  ADS  CAS  Google Scholar 

  133. Klimenko, V.V., Klimenko, A.V., Mikushina, O.V., and Tereshin, A.G., Energy, demography, and climate: Is there an alternative to abandoning fossil fuels?, Dokl. Phys., 2022, vol. 67, no. 10, pp. 433–438.

    Article  ADS  CAS  Google Scholar 

  134. Klimenko, V.V., Klimenko, A.V., Tereshin, A.G., and Fedotova, E.V., Climatic extremes: A new challenge for Russian power systems, Thermal Eng., 2021, vol. 68, no. 3, pp. 171–184.

    Article  ADS  Google Scholar 

  135. Klimenko, V.V., Klimenko, M.V., Bessarab, F.S., et al., Global EAGLE model as a tool for studying the influence of the atmosphere on the electric field in the equatorial ionosphere, Russ. J. Phys. Chem. B, 2019, vol. 13, no. 7, pp. 720–726.

    Article  CAS  Google Scholar 

  136. Klimenko, V.V., Mikushina, O.V. and Tereshin, A.G., Dynamics of biotic carbon fluxes under different scenarios of forest area changes, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 4, pp. 405–413.

    Article  Google Scholar 

  137. Klimenko, V.V., Tereshin, A.G., and Mikushina, O.V., An impact of atmospheric and climate changes on the energy potential of Russian forest resources, Dokl. Phys., 2019, vol. 64, no. 6, pp. 401–407.

    Article  ADS  CAS  Google Scholar 

  138. Klyueva, M.V., Shkol’nik, I.M., Rudakova, Yu.L., Pavlova, T.V., and Kattsov, V.M., Summer tourism in the context of future climate change in Russia: Projections based on the large ensemble of high-resolution conditional forecasts, Meteorol. Gidrol., 2020, no. 6, pp. 47–59.

  139. Korneva, I.A., Rybak, O.O., and Volodin, E.M., Applying the energy- and water balance model for incorporation of the cryospheric component into a climate model. Part III. Modeling mass balance on the surface of the Antarctic ice sheet, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 2, pp. 87–96.

    Article  Google Scholar 

  140. Kostianaia, E.A. and Kostianoy, A.G., Regional climate change impact on coastal tourism: A case study for the black sea coast of Russia, Hydrology, 2021, vol. 8, no. 3, p. 133. https://doi.org/10.3390/hydrology8030133

    Article  Google Scholar 

  141. Krivolutsky, A.A., V’yushkova, T.Yu., Cherepanova, L.A., et al., Numerical global models of the ionosphere, ozonosphere, temperature regime, and circulation for altitudes of 0–130 km: Results and prospects, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 9, pp. 596–605.

    Article  Google Scholar 

  142. Kulikova, I.A., Kruglova, E.N., and Khan, V.M., Evaluation of practical predictability of blocking anticyclones using modern hydrodynamic models, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 1, pp. 1–13.

    Article  Google Scholar 

  143. Kulyamin, D.V. and Ostanin, P.A., Modelling of equatorial ionospheric anomaly in INM RAS coupled thermosphere–ionosphere model, Russ. J. Numer. Anal. Math. Modell., 2020, vol. 35, no. 1, pp. 1–9.

    Article  MathSciNet  Google Scholar 

  144. Kuznetsova, D.A. and Bashmachnikov, I.L., On the mechanisms of variability of the Atlantic Meridional Overturning Circulation (AMOC), Oceanology (Engl. Transl.), 2021, vol. 61, no. 6, pp. 803–814.

  145. Lappapainen, H.K., et al., Overview: Recent advances in the understanding of the Northern Eurasian environments and of the urban air quality in china: A pan-Eurasian experiment (PEEX) programme perspective, Atmos. Chem. Phys., 2022, vol. 22, no. 7, pp. 4413–4469.

    Article  ADS  Google Scholar 

  146. Larin, I.K., On the Influence of global warming on the ozone layer and UVB radiation, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 110–115.

    Article  Google Scholar 

  147. Larin, I.K., On the Influence of global warming on the ozone layer and UVB radiation, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 110–115.

    Article  Google Scholar 

  148. Lipavskii, A.S., Eliseev, A.V., and Mokhov, I.I., Bayesian projections of the Amur and Selenga river runoff changes in the 21st century based on CMIP6 model ensemble simulations, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 5, pp. 370–384.

    Article  Google Scholar 

  149. Lipka, O.N., Romanovskaya, A.A., and Semenov, S.M., Applied aspects of adaptation to climate changes in Russia, Fundam. Prikl. Klimatol., 2020, vol. 1, pp. 65–90.

    Google Scholar 

  150. Loskutov, E., Vdovin, V., Klinshov, V., et al., Applying interval stability concept to empirical model of Middle Pleistocene transition, Chaos, 2022, vol. 32, no. 2, p. 021103.

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  151. Lukina, N., Kuznetsova, A., Tikhonova, E., et al., Linking forest vegetation and soil carbon stock in northwestern Russia. Forests, 2020, vol. 11, no. 9, pp. 979–980.

    Article  Google Scholar 

  152. Lukina, N.V., Global challenges and forest ecosystems, Herald Russ. Acad. Sci., 2020, vol. 90, no. 6, pp. 303–307.

    Article  Google Scholar 

  153. Lunt, D.J., Bragg, F., Steinig, S., et al., DEEPMIP: Model intercomparison of Early Eocene Climatic Optimum (EECO) large-scale climate features and comparison with proxy data, Clim. Past, 2021, vol. 17, no. 1, pp. 203–227.

    Article  Google Scholar 

  154. Lupo, A.R., et al., Changes in global blocking character during recent decades, Atmosphere, 2019, vol. 10, no. 2, p. 9.https://doi.org/10.3390/atmos10020092

  155. MacDougall, A.H., Frölicher, T.L. Jones, C.D., et al., Is there warming in the pipeline? A multi-model analysis of the zero emission commitment from CO2, Biogeosciences, 2020, vol. 17, pp. 2987–3016.

    Article  ADS  Google Scholar 

  156. Makarov, A.S., Mironov, E.U., Ivanov, V.V., and Yulin, A.V., Ice conditions of the Russian Arctic Sea in connection with the occurring climate changes and peculiarities of the ice cover evolution in 2021, Oceanology (Engl. Transl.), 2022, vol. 62, no. 6, pp. 735–745.

  157. Makosko, A.A. and Matesheva, A.V., Assessment of trends in long-range air pollution in the Russian Arctic for 1980–2050 with climate change scenarios, Arkt.: Ekol. Ekon., 2022, vol. 12, no. 1, pp. 34–45.

    Google Scholar 

  158. Makosko, A.A. and Matesheva, A.V., Towards an assessment of environmental risks from air pollution in the Arctic under conditions of a changing climate in the 21st century, Arkt.: Ekol. Ekon., 2020, no. 1, pp. 45–52.

  159. Makosko, A.A., i dr. The transport complex of Russia, in Strategicheskoe planirovanie ustoichivogo funktsionirovaniya ekonomicheskogo kompleksa Rossiiskoi Federatsii (Strategic Planning for the Sustainable functioning of the Economic Complex of the Russian Federation) Bondur, V.G., Makosko, A.A., and Nakonechnii, B.M., Eds., Moscow: RAN, 2021, pp. 77–124.

  160. Malakhova, V. and Golubeva, E., Model study of the effects of climate change on the methane emissions on the Arctic shelves, Atmosphere, 2022, vol. 13, no. 2, p. 274. https://doi.org/10.3390/atmos13020274

    Article  ADS  CAS  Google Scholar 

  161. Malakhova, V.V. and Eliseev, A.V., Impact of salt diffusion on the state and distribution of permafrost and the stability zone of methane hydrates on the Laptev Sea shelf, Led Sneg, 2020a, vol. 60, no. 4, pp. 533-546.

    Google Scholar 

  162. Malakhova, V.V. and Eliseev, A.V., Uncertainty in temperature and sea level datasets for the Pleistocene glacial cycles: Implications for thermal state of the subsea sediments, Global Planet. Change, 2020b, vol. 192, p. 103249.

    Article  Google Scholar 

  163. Malakhova, V.V., The response of the Arctic Ocean gas hydrate associated with subsea permafrost to natural and anthropogenic climate changes, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, p. 012035.

  164. Martynova, Yu.V., Vargin, P.N., and Volodin, E.M., Variation of Northern Hemispheric wintertime storm tracks under future climate change in INM-CM5 simulations, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 3, pp. 208–218.

    Article  Google Scholar 

  165. Matveeva, T.A., Semenov, V.A., and Astaf’eva, E.S., Ice cover of the Arctic seas and its relationship with surface air temperature in the Northern Hemisphere, Led Sneg, 2020, vol. 60, no. 1, pp. 134–148.

    Google Scholar 

  166. Meleshko, V.P., Mirvis, V.M., Govorkova, V.A., et al., The Arctic climate warming and extremely cold winters in North Eurasia during 1979–2017, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 4, pp. 223–230.

    Article  Google Scholar 

  167. Mel’nikov, V.P., Osipov, V.I., Brushkov, A.V., Badina, S.V., Drozdov, D.S., Dubrovin, V.A., Zheleznyak, M.N., Sadurtdinov, M.R., Sergeev, D.O., Okunev, S.N., Ostarkov, N.A., Osokin, A.B., and Fedorov, R.Yu., Adaptation of the Arctic and Subarctic infrastructure to changes in frozen soil temperature, Kriosfera Zemli, 2021, vol. 25, no. 6, pp. 3–15.

    Google Scholar 

  168. Meredith, M., Sommerkorn, M., Cassotta, A., et al., Polar regions, in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Pörtner, H.-O., et al., Eds., Cambridge: Cambridge Univ. Press, 2019, pp. 203–320. https://doi.org/10.1017/9781009157964.005

  169. Metan i klimaticheskie izmeneniya: nauchnye problemy i tekhnologicheskie aspekty (Methane and Climate Change: Scientific Problems and Technological Aspects), Bondur, V.G., Mokhov, I.I., and Makosko, A.A., Eds., Moscow: RAN, 2022.

    Google Scholar 

  170. Mirvis, V.M., Meleshko, V.P., Govorkova, V.A., and Baidin, A.V., Anomalous winter and summer weather patterns over Russia in the 21st century as simulated by CMIP6 models, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 5, pp. 334–342.

    Article  Google Scholar 

  171. Mokhov I.I. and Poroshenko, A.G., Statistical and model estimates of the relationship between the size and lifetime of polar lows, Moscow Univ. Phys. Bull., 2021a, vol. 76, no. 6, pp. 477–481.

    Article  ADS  Google Scholar 

  172. Mokhov, I.I. and Medvedev, N.N., The amplitude–frequency features of different El Niño types and their changes in recent decades, Moscow Univ. Phys. Bull., 2022, vol. 77, no. 3, pp. 542–548.

    Article  ADS  Google Scholar 

  173. Mokhov, I.I. and Parfenova, M.R., Changes in the snow cover extent in Eurasia from satellite data in relation to hemispheric and regional temperature changes, Dokl. Earth Sci., 2021b, vol. 501, no. 1, pp. 963–968.

    Article  ADS  CAS  Google Scholar 

  174. Mokhov, I.I. and Parfenova, M.R., Features of changes in Antarctic and Arctic sea ice in recent decades against the background of global and regional climate changes, Vopr. Geogr., 2020, no. 150, pp. 304–319.

  175. Mokhov, I.I. and Parfenova, M.R., Relationship of the extent of Antarctic and Arctic ice with temperature changes, 1979–2020, Dokl. Earth Sci., 2021a, vol. 496, no. 1, pp. 66–71.

    Article  ADS  CAS  Google Scholar 

  176. Mokhov, I.I. and Parfenova, M.R., Relationships between satellite-derived snow cover extent in the Northern Hemisphere and surface air temperature, Russ. Meteorol. Hydrol., 2022b, vol. 47, no. 2, pp. 98–106.

    Article  Google Scholar 

  177. Mokhov, I.I. and Parfenova, M.R., The relationship between snow cover and sea ice extent and temperature changes in the Northern Hemisphere based on data for recent decades, Izv., Atmos. Ocean. Phys., 2022a, vol. 58, no. 4, pp. 353–363.

    Article  Google Scholar 

  178. Mokhov, I.I. and Pogarskii, F.A., Variations in the characteristics of sea waves in the Arctic basin caused by climate changes in the 21st century based on model simulations, Dokl. Earth Sci., 2021, vol. 496, no. 2, pp. 164–167.

    Article  ADS  CAS  Google Scholar 

  179. Mokhov, I.I. and Pogarskii, F.A., Variations in the characteristics of sea waves in the Arctic basin caused by climate changes in the 21st century based on model simulations, Dokl. Earth Sci., 2021, vol. 496, no. 2, pp. 164–167.

    Article  ADS  CAS  Google Scholar 

  180. Mokhov, I.I. and Poroshenko, A.G., Action as an integral characteristic of atmospheric (climatic) structures: Estimates for tropical cyclones, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 6, pp. 539–544.

    Article  Google Scholar 

  181. Mokhov, I.I. and Poroshenko, A.G., Statistical and model estimates of the relationship between the intensity and duration of tropical cyclones, Russ. Meteorol. Hydrol., 2021b, vol. 46, no. 5, pp. 302–306.

    Article  Google Scholar 

  182. Mokhov, I.I. and Smirnov, D.A., Contributions to surface air temperature trends estimated from climate time series: Medium-term causalities, Chaos, 2022c, vol. 32, p. 063128. https://doi.org/10.1063/5.0088042

    Article  ADS  PubMed  CAS  Google Scholar 

  183. Mokhov, I.I. and Smirnov, D.A., Empirical estimates of the contribution of greenhouse gases and natural climatic variability to surface air temperature trends for various latitudes, Dokl. Earth Sci., 2022a, vol. 503, no. 1, pp. 114–118.

    Article  ADS  CAS  Google Scholar 

  184. Mokhov, I.I. and Smirnov, D.A., Estimating contributions of natural climate variability modes and greenhouse gases to surface temperature trends in the Southern Hemisphere from observations, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 2, pp. 131–139.

    Article  Google Scholar 

  185. Mokhov, I.I. and Timazhev, A.V., Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 6, pp. 369–377.

    Article  Google Scholar 

  186. Mokhov, I.I. and Timazhev, A.V., Frequency of summer atmospheric blockings in the Northern Hemisphere in different phases of El Niño and Pacific Decadal and Atlantic Multidecadal oscillations, Izv., Atmos. Ocean. Phys., 2022a, vol. 58, no. 3, pp. 199–207.

    Article  Google Scholar 

  187. Mokhov, I.I. and Timazhev, A.V., Integral index of atmospheric blocking activity in the Northern Hemisphere in recent decades, Izv., Atmos. Ocean. Phys., 2022b, vol. 58, no. 6, pp. 545–552.

    Article  Google Scholar 

  188. Mokhov, I.I. and Timazhev, A.V., Seasonal hydrometeorological extremes in the Northern Eurasian regions depending on ENSO phase transitions, Atmosphere, 2022, vol. 13, no. 2, p. 249. https://doi.org/10.3390/atmos13020249

    Article  ADS  Google Scholar 

  189. Mokhov, I.I. and Timazhev, A.V., Vertical temperature stratification of the atmosphere depending on the length of the annual insolation cycle from simulations with the coupled general circulation model, Dokl. Earth Sci., 2020, vol. 494, no. 2, pp. 795–798.

    Article  ADS  CAS  Google Scholar 

  190. Mokhov, I.I., Analytical conditions for the formation of arctic amplification in the Earth’s climate system, Dokl. Earth Sci., 2022b, vol. 505, no. 1, pp. 496–500.

    Article  ADS  CAS  Google Scholar 

  191. Mokhov, I.I., Anomalous winters in regions of Northern Eurasia in different phases of the El Niño phenomena, Dokl. Earth Sci., 2020c, vol. 493, no. 2, pp. 649–653.

    Article  ADS  CAS  Google Scholar 

  192. Mokhov, I.I., Bondur, V.G., Sitnov, S.A., and Voronova, O.S., Satellite monitoring of wildfires and emissions into the atmosphere of combustion products in Russia: Relation to atmospheric blockings, Dokl. Earth Sci., 2020a, vol. 495, no. 2, pp. 921–924.

    Article  ADS  CAS  Google Scholar 

  193. Mokhov, I.I., Changes in the frequency of phase transitions of different types of El Niño phenomena in recent decades, Izv., Atmos. Ocean. Phys., 2022, vol. 58, no. 1, pp. 1–6.

    Article  Google Scholar 

  194. Mokhov, I.I., Chernokulsky, A.V., and Osipov, A.M., Atmospheric centers of action in the Northern and Southern hemispheres: Features and variability, Russ. Meteorol. Hydrol., 2020c, vol. 45, no. 11, pp. 749–761.

    Article  Google Scholar 

  195. Mokhov, I.I., Climate change: Causes, risks, consequences, and problems of adaptation and regulation, Herald Russ. Acad. Sci., 2022a, vol. 92, no. 1, pp. 1–11.

    Article  Google Scholar 

  196. Mokhov, I.I., Eliseev, A.V., and Guryanov, V.V., Model estimates of global and regional climate changes in the Holocene, Dokl. Earth Sci., 2020, vol. 490, no. 1, pp. 23–27.

    Article  ADS  CAS  Google Scholar 

  197. Mokhov, I.I., Extreme atmospheric and hydrological phenomena in Russian regions: Relationship with the Pacific Decadal Oscillation, Dokl. Earth Sci., 2021, vol. 500, no. 2, pp. 861–865.

    Article  ADS  CAS  Google Scholar 

  198. Mokhov, I.I., Features of contemporary changes in the Arctic and their consequences, Probl. Arkt. Antarkt., 2020, vol. 66, no. 4, pp. 446–462.

    Google Scholar 

  199. Mokhov, I.I., Geophysical thermodynamics: Features of atmospheric temperature stratification in the annual cycle, Moscow Univ. Phys. Bull., 2022, vol. 77, no. 3, pp. 549–554.

    Article  ADS  Google Scholar 

  200. Mokhov, I.I., Makarova, M.E., and Poroshenko, A.G., Tropical cyclones and their transformation into extratropical: Estimates of the half-century trends, Dokl. Earth Sci., 2020b, vol. 493, no. 1, pp. 552–557.

    Article  ADS  CAS  Google Scholar 

  201. Mokhov, I.I., Malakhova, V.V., and Arzhanov, M.M., Model estimates of intra- and intercentennial degradation of permafrost on the Yamal Peninsula under warming, Dokl. Earth Sci., 2022, vol. 506, no. 2, pp. 782–789.

    Article  ADS  CAS  Google Scholar 

  202. Mokhov, I.I., Osipov, A.M., and Chernokulsky, A.V., Atmospheric centers of action in the Northern Hemisphere: Current features and expected changes in the 21st century based on simulations with the CMIP5 and CMIP6 ensembles of climate models, Dokl. Earth Sci., 2022b, vol. 507, no. 2, pp. 1132–1139.

    Article  ADS  CAS  Google Scholar 

  203. Mokhov, I.I., Russian atmospheric and meteorological research in 2015–2018, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 6, pp. 503–504.

    Article  Google Scholar 

  204. Mokhov, I.I., Russian atmospheric and meteorological research in 2019–2022, Izv., Atmos. Ocean. Phys., 2023, vol. 59, no. 15.

  205. Mokhov, I.I., Russian climate research in 2015–2018, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 4, pp. 325–343.

    Article  Google Scholar 

  206. Mokhov, I.I., Yushkov, V.P., Timazhev, A.V., and Babanov, B.A., Squalls with a hurricane wind in Moscow, 2020d, vol. 75, no. 6, pp. 712–716.

  207. Molodykh, S.I., Zherebtsov, G.A., and Karakhanyan, A.A., Estimation of solar activity impact on the outgoing infrared-radiation flux, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 2, pp. 205–211.

  208. Morozova, P.A., Ushakov, K.V., Semenov, V.A., and Volodin, E.M., Water budget of the Caspian Sea in the last glacial maximum by data of experiments with mathematical models, Water Resour., 2021, vol. 48, no. 6, pp. 823–830.

    Article  CAS  Google Scholar 

  209. Mukhin, D., Gavrilov, A., Loskutov, E., et al., Bayesian data analysis for revealing causes of the middle Pleistocene transition, Sci. Rep., 2019, vol. 9, no. 1, p. 7328. https://www.nature.com/articles/s41598-019-43867-3.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  210. Mukhin, D.N., Seleznev, A.F., Gavrilov, A.S., and Feigin, A.M., Optimal data-driven models of forced dynamical systems: General approach and examples from climate, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2021, vol. 29, no. 4, pp. 571–602.

    Google Scholar 

  211. Muryshev, K.E., Eliseev, A.V., Denisov, S.N., et al., Phase shift between changes in global temperature and atmospheric CO2 content under external emissions of greenhouse gases into the atmosphere, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 3, pp. 235–241.

    Article  Google Scholar 

  212. Muryshev, K.E., Eliseev, A.V., Mokhov, I.I., et al., Influence of nonlinear processes on the time lag between changes in the global temperature and the carbon dioxide content in the atmosphere, Dokl. Earth Sci., 2021, vol. 501, no. 1, pp. 949–954.

    Article  ADS  CAS  Google Scholar 

  213. Nerushev, A.F., Visheratin, K.N., Ivangorodsky, R.V., Statistical model of the time variability of the characteristics of high-altitude jet currents in the Northern Hemisphere based on satellite measurements, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 4, pp. 354–364.

    Article  Google Scholar 

  214. Oganesyan, V.V. and Sterin, A.M., Estimates for potential financial loss from hazardous and adverse meteorological events on the territory of Russian Federation in 1987–2017, Meteorol. Gidrol., 2019, no. 12, pp. 97–108.

  215. Osipov, A.M. and Gushchina, D.Yu., Mechanism of generating two types of El Niño under modern climatic conditions, Vestn. Mosk. Univ., Ser. 5: Geogr., 2021, no. 1, pp. 128–135.

  216. Otto-Bliesner, B.L., Brady, E.C., Zhao, A., et al., Large-scale features of last interglacial climate: Results from evaluating the lig127k simulations for the coupled model intercomparison project (CMIP6)-paleoclimate modeling intercomparison project (PMIP4), Clim. Past, 2021, vol. 17, no. 1, pp. 63–94.

    Article  Google Scholar 

  217. Overland, J., Wang, M., Dunlea, E., et al., The urgency of Arctic change, in Polar Science, Elsevier, 2019, vol. 21, pp. 6–13.

    Google Scholar 

  218. Parfenova, M.R., Eliseev, A.V., Mokhov, I.I., et al., Changes in the duration of the navigation period in Arctic seas along the Northern Sea Route in the twenty-first century: Bayesian estimates based on calculations with the ensemble of climate models, Dokl. Earth Sci., 2022, vol. 507, no. 1, pp. 952–958.

    Article  ADS  CAS  Google Scholar 

  219. Pastukhova, A.S., Chubarova, N.E., Zhdanova, E.Yu., et al., Numerical simulation of variations in ozone content, erythemal ultraviolet radiation, and ultraviolet resources over Northern Eurasia in the 21st century, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 3, pp. 242–250.

    Article  Google Scholar 

  220. Pathak, M., et al., Technical summary, in IPCC Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Shukla, P.R., et al., Eds., Cambridge: Cambridge Univ. Press, 2022. https://doi.org/10.1017/9781009157926.002.

  221. Pavlova, V., Shkolnik, I., Pikaleva, A., et al., Future changes in spring wheat yield in the European Russia as inferred from a large ensemble of high-resolution climate projections, Environ. Res. Lett., 2019, vol. 14, p. 034010. https://doi.org/10.1088/1748-9326/aaf8be

    Article  ADS  CAS  Google Scholar 

  222. Pavlova, V.N., Bogdanovich, A.Yu., and Semenov, S.M., Assessment of climate favorability for the grain cultivation based on the frequency of severe droughts, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 12, pp. 864–869.

    Article  Google Scholar 

  223. Pekarnikova, M.E. and Polonskii, A.B., Analysis of the feasibility of achieving the main goal of the Paris Agreement under the existing system of legal regulation and control over anthropogenic greenhouse gas emissions, Fundam. Prikl. Klimatol., 2022, vol. 8, no. 2, pp. 190–208.

    Google Scholar 

  224. Pekarnikova, M.E. and Polonskii, A.B., Anthropogenic climate change and international legal activities to mitigate its consequences. Part 2: Implementation of legal acts on climate at present and their prospects, Gosudarstvo Pravo, 2021, no. 5, pp. 118–124.

  225. Perevedentsev, Yu.P., Vasil’ev, A.A., Sherstyukov, B.G., and Shantalinskii, K.M., Climate change on the territory of Russia in the late 20th–early 21st centuries, Russ. Meteorol. Hydrol., 2021, vol. 46, no. 10, pp. 658–666.

    Article  Google Scholar 

  226. Petrov, D.A., Properties of the frequency spectra of the sea surface and land surface air temperature anomalies in a simple stochastic climate model with fluctuating parameters, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 4, pp. 324–333.

    Article  Google Scholar 

  227. Pikaleva, A.A., Shkol’nik, I.M., Sternzat, A.V., Egorov, B.N., and Nadezhina, E.D., High-resolution ensemble climate projections of water deficit in arid regions by the mid-21st century, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 12, pp. 844–850.

    Article  Google Scholar 

  228. Polonskii, A.B. and Pekarnikova, M.E., Anthropogenic climate change and international legal activities to mitigate its consequences. Part 1: From the UN Framework Convention to the Paris Agreement, Gosudarstvo Pravo, 2021, no. 4, pp. 104–113.

  229. Polonskii, A.B. and Serebrennikov, A.N., Intensification of eastern boundary upwelling systems in the Atlantic and Pacific oceans, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 422–429.

    Article  Google Scholar 

  230. Polonskii, A.B. and Sukhonos, P.A., Influence of the North Atlantic Oscillation on the heat budget of the mixed layer in the North Atlantic, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 623–629.

    Article  Google Scholar 

  231. Polonsky, A.B., The IOD–ENSO interaction: The role of the Indian Ocean current’s system, Atmosphere, 2021, vol. 12, no. 12, p. 166.https://doi.org/10.3390/atmos12121662

  232. Polonsky, A.B., The Ocean’s Role in Climate Change, Newcastle upon Tyne: Cambridge Scholars Publ., 2019.

    Google Scholar 

  233. Porfir’ev, B.N., Shirov, A.A., Kolpakov, A.Yu., and Edinak, E.A., Opportunities and risks of climate regulation policy in Russia, Vopr. Ekon., 2022, no. 1, pp. 72–89.

  234. Porfir’ev, B.N., Decarbonization versus adaptation of economy to climate changes in the strategy of sustainable development, Probl. Prognozirovaniya, 2022, no. 4, pp. 45–54.

  235. Porfir’ev, B.N., Economic dimension of the climate challenge to Russia’s sustainable development, Herald. Russ. Acad. Sci., 2019a, vol. 89, no. 2, pp. 134–139.

    Article  Google Scholar 

  236. Porfir’ev, B.N., Effective strategy of action in relation to climate changes and their consequences for the Russian economy, Probl. Prognozirovaniya, 2019c, no. 3, pp. 3–16.

  237. Porfir’ev, B.N., Eliseev, D.O., and Streletskii, D.A., Economic assessment of permafrost degradation effects on healthcare facilities in the Russian Arctic, Herald. Russ. Acad. Sci., 2021b, vol. 91, no. 7, pp. 677–686.

    Article  Google Scholar 

  238. Porfir’ev, B.N., Eliseev, D.O., and Streletskii, D.A., Economic assessment of permafrost degradation effects on road infrastructure sustainability under climate change in the Russian Arctic, Herald. Russ. Acad. Sci., 2019, vol. 89, no. 6, pp. 567–576.

    Article  Google Scholar 

  239. Porfir’ev, B.N., Eliseev, D.O., and Streletskii, D.A., Economic assessment of permafrost degradation effects on the housing sector in the Russian Arctic, Herald. Russ. Acad. Sci., 2021a, vol. 91, no. 1, pp. 17–25.

    Article  Google Scholar 

  240. Porfir’ev, B.N., Paradigm of low-carbon development and strategy for reducing the risks of climate change for the economy, Probl. Prognozirovaniya, 2019b, no. 2, pp. 3–13.

  241. Postnikova, T.N. and Rybak, O.O., Global glaciological models: A new stage in the development of methods for predicting the evolution of glaciers. Part 2: Experimental setup and practical applications, Led Sneg, 2022, vol. 62, no. 2, pp. 287–304.

    Google Scholar 

  242. Pustovalov, K.N., Kharyutkina, E.V., Korol’kov, V.A., and Nagorskii, P.M., Variations in resources of solar and wind energy in the Russian sector of the Arctic, Atmos. Oceanic Opt., 2020, vol. 33, no. 3, pp. 282–288.

    Article  Google Scholar 

  243. Revich, B.A. and Grigor’eva, E.A., Health risks for the Russian population from weather extremes in the early 21st century. Part 1: Waves of heat and cold, Probl. Anal. Riska, 2021, vol. 18, no. 2, pp. 12–33.

    Article  Google Scholar 

  244. Revich, B.A., Eliseev, D.O., and Shaposhnikov, D.A., Risks for public health and social infrastructure in Russian Arctic under climate change and permafrost degradation, Atmosphere, 2022, vol. 13, no. 4, p. 532.

    Article  ADS  CAS  Google Scholar 

  245. Revich, B.A., Maleev, V.V., and Smirnova, M.D., Izmenenie klimata i zdorov’e: otsenki, indikatory, prognozy (Climate Change and Health: Estimates, Indicators, and Forecasts), Moscow: INP RAN. 2019.

  246. Revich, B.A., New and old health risks in a changing climate, Probl. Anal. Riska, 2021, vol. 18, no. 2, pp. 8–11.

    Article  Google Scholar 

  247. Romanovskaya, A.A. and Federici, S., How much greenhouse gas can each global inhabitant emit while attaining the Paris Agreement temperature limit goal? The equity dilemma in sharing the global climate budget to 2100, Carbon Manage., 2019, vol. 10, no. 4, pp. 361–377.

    Article  CAS  Google Scholar 

  248. Romanovskaya, A.A., Korotkov, V.N., Polumieva, P.D., et al., Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation, Mitigation Adapt. Strategies Global Change, 2020, vol. 25, no. 4, pp. 661–687.

    Article  Google Scholar 

  249. Rubinshtein, K.G., Zarochentsev, G.A., Ignatov, R.Yu., et al., Regional model of atmospheric dynamics for the system of numerical modeling of the Arctic climate, Gidrometeorol. Issled. Prognozy, 2019, no. 3, pp. 60–72.

  250. Russian National Report: Meteorology and Atmospheric Sciences (2015–2018), Mokhov, I.I. and Krivolutsky, A.A., Eds., Moscow, MAKS Press, 2019.

    Google Scholar 

  251. Russian National Report: Meteorology and Atmospheric Sciences (2019–2022), Mokhov, I.I. and Krivolutsky, A.A., Eds., Moscow, MAKS Press, 2023.

    Google Scholar 

  252. Ryashko, L., Alexandrov, D.V., and Bashkirtseva, I., Analysis of stochastic generation and shifts of phantom attractors in a climate-vegetation dynamical model, Mathematics, 2021, vol. 9, p. 1329.

    Article  Google Scholar 

  253. Santolaria-Otin, M. and Zolina, O., Evaluation of snow cover and snow water equivalent in the continental Arctic in CMIP5 models, Clim. Dyn., 2020, vol. 55, pp. 2993–3016.

    Article  Google Scholar 

  254. Schepaschenko, D., Moltchanova, E., Fedorov, S., et al., Russian forest sequesters substantially more carbon than previously reported, Sci. Rep., 2021, vol. 11, no. 1, p. 252.

    Article  Google Scholar 

  255. Semenov, S.M., Popov, I.O., and Yasyukevich, V.V., Statistical model for assessing the formation of climate-related hazards based on climate monitoring data, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 5, pp. 339–344.

    Article  Google Scholar 

  256. Semenov, V.A. and Matveeva, T.A., Arctic sea ice in the first half of the 20th century: Temperature-based spatiotemporal reconstruction, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 5, pp. 534–538.

    Article  Google Scholar 

  257. Semenov, V.A., Modern Arctic climate research: Progress, change of concepts, and urgent problems, Izv., Atmos. Ocean. Phys., 2021, vol. 57, no. 1, pp. 18–28.

    Article  Google Scholar 

  258. Serykh, I.V. and Sonechkin, D.M., Nonchaotic and globally synchronized short-term climatic variations and their origin, Theor. Appl. Climatol., 2019, vol. 137, pp. 2639–2656.

    Article  ADS  Google Scholar 

  259. Shakhova, N., Semiletov, I., and Chuvilin, E., Understanding the permafrost–hydrate system and associated methane releases in the East Siberian Arctic shelf, Geosciences, 2019, vol. 9, p. 251.

    Article  ADS  CAS  Google Scholar 

  260. Shaw, R., Luo, Y., Cheong, T.S., et al., Asia, in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Pörtner, H.-O., Eds., Cambridge: Cambridge Univ. Press, 2022, pp. 1457–1579.

    Google Scholar 

  261. Shestakova, A.A. and Volodin, E.M., Troposphere vertical structure simulation with the INMCN climate model, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 2, pp. 103–111.

  262. Shkol’nik, I.M., Nadezhina, E.D., Sternzat, A.V., Pikaleva, A.A., and Egorov, B.N., Modeling evolution of drought conditions in the 21st century to substantiate measures for adaption of Russian agriculture to climate impacts, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 5, pp. 394–404.

    Article  Google Scholar 

  263. Shkol’nik, I.M., Pigol’tsina, G.B., and Efimov, S.V., Agriculture in the arid regions of Eurasia and global warming: RCM ensemble projections for the middle of the 21st century, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 8, pp. 540–547.

    Article  Google Scholar 

  264. Skea, J., Shukla, P.R., Reisinger, A., et al., Summary for Policymakers, in IPCC Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Shukla, P.R., et al., Eds., Cambridge: Cambridge Univ. Press, 2022. https://doi.org/10.1017/9781009157926.001

  265. Slyunyaev, N.N., Ilin, N.V., Mareev, E.A., and Price, C.G., A new link between El Niño–Southern Oscillation and atmospheric electricity, Environ. Res. Lett., 2021b, vol. 16, no. 4, p. 044025.

    Article  ADS  Google Scholar 

  266. Slyunyaev, N.N., Ilin, N.V., Mareev, E.A., and Price, C.G., The global electric circuit land–o1cean response to the El Niño–Southern Oscillation, Atmos. Res., 2021a, vol. 260, p. 105626.

    Article  Google Scholar 

  267. Smith, P., Nkem, J., Calvin, K., et al., Interlinkages between desertification, land degradation, food security and greenhouse gas fluxes: Synergies, trade-offs and integrated response options, in Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, Shukla, R.P., et al., Eds., 2019, pp. 551–567.https://doi.org/10.1017/9781009157988.008

  268. Smyshlyaev, S., Galin, V., Blakitnaya, P., and Jakovlev, A., Numerical modelling of the natural and manmade factors influencing past and current changes in polar, mid-latitude and tropical ozone, Atmosphere, 2020, vol. 11, p. 76.

    Article  ADS  Google Scholar 

  269. Soldatenko, S.A. and Colman, R., Climate variability from annual to multi-decadal timescales in a two-layer stochastic energy balance model: analytic solutions and implications for general circulation models, Tellus A, 2019, vol. 71, no. 1, pp. 1–15.

    Article  Google Scholar 

  270. Soldatenko, S.A. and Yusupov, R.M., Estimating the influence of thermal inertia and feedbacks in the atmosphere–ocean system on the variability of the global surface air temperature, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 6, pp. 591–601.

    Article  Google Scholar 

  271. Soldatenko, S.A. and Yusupov, R.M., Model for estimating the transient response of the global mean surface temperature to changes in the concentrations of atmospheric aerosols and radiatively active gases, Atmos. Oceanic Opt., 2019, vol. 32, no. 4, pp. 578–585.

    Article  Google Scholar 

  272. Soldatenko, S.A. and Yusupov, R.M., Optimal control for the process of using artificial sulfate aerosols for mitigating global warming, Atmos. Oceanic Opt., 2019, vol. 32, no. 1, pp. 55–63.

    Article  Google Scholar 

  273. Soldatenko, S.A. and Yusupov, R.M., Optimal control perspective on weather and climate modification, Mathematics, 2021, vol. 9, no. 4, pp. 1–16.

    Article  Google Scholar 

  274. Soldatenko, S.A., Bogomolov, A., and Ronzhin, A., Mathematical modelling of climate change and variability in the context of outdoor ergonomics, Mathematics, 2021, vol. 9, no. 22, p. 2920.

    Article  Google Scholar 

  275. Soldatenko, S.A., Effects of global warming on the poleward heat transport by non-stationary large-scale atmospheric eddies, and feedbacks affecting the formation of the Arctic climate, J. Mar. Sci. Eng., 2021, vol. 9, no. 8, p. 867.

    Article  Google Scholar 

  276. Soldatenko, S.A., Estimated impacts of climate change on eddy meridional moisture transport in the atmosphere, Appl. Sci., 2019, vol. 9, no. 23, p. 4992.

    Article  Google Scholar 

  277. Soldatenko, S.A., Estimating the effect of radiative effect uncertainties on climate response to changes in the concentration of stratospheric aerosols, Atmosphere, 2020, vol. 11, no. 6, p. 654.

    Article  ADS  CAS  Google Scholar 

  278. Soldatenko, S.A., Yusupov, R.M., and Kolman, R., A cybernetic approach to the interaction between society and nature in an unprecedentedly changing climate, Tr. SPIIRAN, 2020, vol. 19, no. 1, pp. 5–42.

    Google Scholar 

  279. Sonechkin, D.M., Vakulenko, N.V., and Volodin, E.M., Sun-induced synchronizations of the interannual to interdecadal hemispheric mean (land and sea) temperature variations, J. Atmos. Sol.-Terr. Phys., 2020, p. 105450.

  280. Sonechkin, D.M., Vakulenko, N.V., and Volodin, E.M., Sun-induced synchronizations of the interannual to interdecadal hemispheric mean (land and sea) temperature variations, J. Atmos. Sol.-Terr. Phys., 2020, p. 105450.

  281. Steidinger, B.S., Crowther, T.W., Liang, J., et al., Climatic controls of decomposition drive the global biogeography of forest-tree symbioses, Nature, 2019, vol. 569, no. 7756, pp. 404–408.

    Article  ADS  PubMed  CAS  Google Scholar 

  282. Stepanenko, V.M., Repina, I.A., Fedosov, V.E., et al., An overview of parameterizations of heat transfer over moss-covered surfaces in the Earth system models, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 2, pp. 101–111.

    Article  Google Scholar 

  283. Streletsky, D.A., Suter, L.J., Shiklomanov, N.I., et al., Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost, Environ. Res. Lett., 2019, vol. 14, no. 2, p. 025003.

    Article  ADS  Google Scholar 

  284. Studholme, J., Fedorov, A.V., Gulev, S.K., Emanuel, K., and Hodges, K., Poleward expansion of tropical cyclone latitudes in warming climates, Nat. Geosci., 2021. https://doi.org/10.1038/s41561-021-00859-1

  285. Sukhodolov, T., Egorova, T., Stenke, A., et al., At-mosphere–ocean–aerosol–chemistry–climate model SOCO-LV4.0: Description and evaluation, Geosci. Model Dev., 2021, vol. 14, pp. 5525–5560.

    Article  ADS  CAS  Google Scholar 

  286. Sukhonos, P.A. and Diansky, N.A., Connections between the long-period variability modes of both temperature and depth of the upper mixed layer of the North Atlantic and the climate variability indices, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 3, pp. 300–311.

    Article  Google Scholar 

  287. Surkova, G. and Krylov, A., Extremely strong winds and weather patterns over Arctic seas, Geogr. Environ. Sustainability, 2019, vol. 12, no. 3, pp. 34–42.

    Article  Google Scholar 

  288. Tebaldi, C., Debeire, K., Eyring, V., et al., Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6, Earth Syst. Dyn., 2021, vol. 12, no. 1, pp. 253–293.

    Article  ADS  Google Scholar 

  289. Torzhkov, I.O., Kushnir, E.A., Konstantinov, A.V., et al., Assessment of future climate change impacts on forestry in Russia, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 3, pp. 180–186.

    Article  Google Scholar 

  290. Tretii otsenochnyi otchet ob izmenenii klimata i ego posledstviyakh na territorii Rossiiskoi Federatsii. Obshchee rezyume (Third Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation. General Summary), St. Petersburg: Naukoemkie tekhnologii, 2022.

  291. Vaganov, E.A., Porfir’ev, B.N., Shirov, A.A., Kolpakov, A.Yu., and Pyzhev, A.I., Assessing the contribution of Russian forests to reducing the climate change risks, Ekon. Reg., 2021, vol. 17, no. 4, pp. 1096–1109.

    Google Scholar 

  292. Vakulenko, N.V., Datsenko, N.M., and Sonechkin, D.M., Changes in general atmospheric circulation in the Northern Hemisphere in 1998–2018, Russ. Meteorol. Hydrol., 2020, vol. 45, no. 10, pp. 677–682.

    Article  Google Scholar 

  293. Vanderkelen, I., van Lipzig, N.P.M., Lawrence, D.M., et al., Global heat uptake by inland waters, Geophys. Res. Lett., 2020, vol. 47, no. 12, p. e2020GL087867. https://doi.org/10.1029/2020GL087867

  294. Vanderkelen, I., van Lipzig, N.P.M., Lawrence, D.M., et al., Global heat uptake by inland waters, Geophys. Res. Lett., 2020, vol. 47, no. 12, p. e2020GL087867. https://doi.org/10.1029/2020GL087867

  295. Vargin, P.N., Kostrykin, S.V., Rakushina, E.V., Volodin, E.M., and Pogorel’tsev, A.I., Study of the variability of spring breakup dates and Arctic stratospheric polar vortex parameters from simulation and reanalysis data, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 5, pp. 458–469.

    Article  Google Scholar 

  296. Vasil’ev, A.A., Gravis, A.G., Gubar’kov, A.A., Drozdov, D.S., Korostelev, Yu.V., Malkova, G.V., Oblogov, G.E., Ponomareva, O.E., Sadurtdinov, M.R., Streletskaya, I.D., Streletskii, D.A., Ustinova, E.V., and Shirokov, R.S., Permafrost degradation: Results of long-term geocryological monitoring in the western sector of the Russian Arctic, Kriosfera Zemli, 2020, vol. 24, no. 2, pp. 15–30.

    Google Scholar 

  297. Volodin, E., The mechanisms of cloudiness evolution responsible for equilibrium climate sensitivity in climate model INM-CM4-8, Geophys. Res. Lett., 2021c, vol. 48, no. 24, p. e2021GL096204.

  298. Volodin, E.M. and Gritsun, A.S., Simulation of possible future climate changes in the 21st century in the INM-CM--5 climate model, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 3, pp. 218–228.

    Article  Google Scholar 

  299. Volodin, E.M., Equilibrium sensitivity of a climate model to an increase in the atmospheric CO2 concentration using different methods to account for cloudiness, Izv., Atmos. Ocean. Phys., 2021a, vol. 57, no. 2, pp. 127–132.

    Article  Google Scholar 

  300. Volodin, E.M., Estimation of the contribution of different mechanisms to the phase evolution of quasi-biennial oscillation using the results of climate simulation, Izv., Atmos. Ocean. Phys., 2019, vol. 55, no. 1, pp. 32–37.

    Article  Google Scholar 

  301. Volodin, E.M., On the mechanism of Arctic climate oscillation with a period of about 15 years according to data of the INM RAS climate model, Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 2, pp. 112–122.

    Article  Google Scholar 

  302. Volodin, E.M., Possible climate change in Russia in the 21st century based on the INM-CM5-0 climate model, Russ. Meteorol. Hydrol., 2022, vol. 47, no. 5, pp. 327–333.

    Article  Google Scholar 

  303. Volodin, E.M., Relationship between natural climate variability and equilibrium sensitivity in the climate model of the Institute of Numerical Mathematics of the Russian Academy of Sciences to increasing CO2, Izv., Atmos. Ocean. Phys., 2021b, vol. 57, no. 5, pp. 447–450.

    Article  Google Scholar 

  304. Vyruchalkina, T.Yu., Diansky, N.A., and Fomin, V.V., Effect of long-term variations in wind regime over Caspian Sea region on the evolution of its level in 1948–2017, Water Resour., 2020, vol. 47, no. 2, pp. 348–357.

    Article  CAS  Google Scholar 

  305. Vyruchalkina, T.Yu., Diansky, N.A., and Fomin, V.V., Evolution of the Caspian Sea level under the influence of climatic changes in the wind field, Tr. Gos. Okeanogr. Inst., 2019, no. 220, pp. 135–147.

  306. Winkler, A.J., Myneni, R.B., Brovkin, V., and Alexandrov, G.A., Earth system models underestimate carbon fixation by plants in the high latitudes, Nat. Commun., 2019, vol. 10, no. 1, p. 885.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  307. Xu, L.Y., Wei, K., Smyshlyaev, S.P., et al., The effect of super volcanic eruptions on ozone depletion in a chemistry–climate model, Adv. Atmos. Sci., 2019, vol. 36, pp. 823–836.

    Article  CAS  Google Scholar 

  308. Zherebtsov, G.A., Kovalenko, V.A., Molodykh, S.I., and Kirichenko, K.E., Solar variability manifestations in weather and climate characteristics, J. Atmos. Sol.-Terr. Phys., 2019, vol. 182, pp. 217–222.

    Article  ADS  Google Scholar 

  309. Zuev, V.V. and Savel’eva, E.S., Dinamika stratosfernykh polyarnykh vikhrei (Dynamics of Stratospheric Polar Vortices), Novosibirsk: Geo. 2020.

  310. Zveryaev, I.I. and Arkhipkin, A.V., Leading modes of interannual soil moisture variability in European Russia and their relation to regional climate during the summer season, Clim. Dyn., 2019, vol. 53, pp. 3007–3022.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I. Russian Climate Research in 2019–2022. Izv. Atmos. Ocean. Phys. 59 (Suppl 3), S246–S265 (2023). https://doi.org/10.1134/S0001433823150100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433823150100

Keywords:

Navigation