Skip to main content
Log in

Twin Heteroclinic Connections of Reversible Systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We examine smooth four-dimensional vector fields reversible under some smooth involution \(L\) that has a smooth two-dimensional submanifold of fixed points. Our main interest here is in the orbit structure of such a system near two types of heteroclinic connections involving saddle-foci and heteroclinic orbits connecting them. In both cases we found families of symmetric periodic orbits, multi-round heteroclinic connections and countable families of homoclinic orbits of saddle-foci. All this suggests that the orbit structure near such connections is very complicated. A non-variational version of the stationary Swift – Hohenberg equation is considered, as an example, where such structure has been found numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. In fact, points \(\Phi^{t_{1}}(b)\) and \(L\circ\Phi^{t_{1}}(b)\) will be different even if the orbit through \(b\) is symmetric, but its intersection point with \(\mathop{\rm Fix}(L)\) does not belong to \(N_{1}\).

  2. Similarly, one may consider the involution \(L_{\mu}\) smoothly depending on \(\mu\).

References

  1. Banyaga, A., de la Llave, R., and Wayne, C. E., Cohomology Equations Near Hyperbolic Points and Geometric Versions of Sternberg Linearization Theorem, J. Geom. Anal., 1996, vol. 6, no. 4, pp. 613–649.

    Article  MathSciNet  Google Scholar 

  2. Barrientos, P. G., Raibekas, A., and Rodrigues, A. A. P., Chaos near a Reversible Homoclinic Bifocus, Dyn. Syst., 2019, vol. 34, no. 3, pp. 504–516.

    Article  MathSciNet  Google Scholar 

  3. Belitskii, G. R., Functional Equations and Conjugacy of Local Diffeomorphisms of a Finite Smoothness Class, Func. Anal. Appl., 1973, vol. 7, no. 4, pp. 268–277; see also: Funktsional. Anal. i Prilozhen., 1973, vol. 7, no. 4, pp. 17-28.

    Article  MathSciNet  Google Scholar 

  4. Belyakov, L. A., Glebsky, L. Yu., and Lerman, L. M., Abundance of Stable Stationary Localized Solutions to the Generalized \(1\)D Swift – Hohenberg Equation, Comput. Math. Appl., 1997, vol. 34, no. 2–4, pp. 253–266.

    Article  MathSciNet  Google Scholar 

  5. Bochner, S., Compact Groups of Differentiable Transformations, Ann. of Math. (2), 1945, vol. 46, no. 3, pp. 372–381.

    Article  MathSciNet  Google Scholar 

  6. Bona, J. L. and Chen, M., A Boussinesq System for Two-Way Propagation of Nonlinear Dispersive Waves, Phys. D, 1998, vol. 116, no. 1–2, pp. 191–224.

    Article  MathSciNet  Google Scholar 

  7. Bronstein, I. U. and Kopanskii, A. Ya., Normal Forms of Vector Fields Satisfying Certain Geometric Conditions, in Nonlinear Dynamical Systems and Chaos (Groningen, 1995), H. W. Broer, S. A. van Gils, I. Hoveijn, F. Takens (Eds.), Progr. Nonlinear Differential Equations Appl., vol. 19, Basel: Birkhäuser, 1996, pp. 79–101.

    Chapter  Google Scholar 

  8. Brjuno, A. D., Analytic Form of Differential Equations: 1, Trans. Moscow Math. Soc., 1971, vol. 25, pp. 131–288; see also: Tr. Mosk. Mat. Obs., 1971, vol. 25, pp. 119–262.Brjuno, A. D., Analytic Form of Differential Equations: 2, Trans. Moscow Math. Soc., 1972, vol. 26, pp. 199–239; see also: Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 199-239.

    MathSciNet  Google Scholar 

  9. Budd, C. J. and Kuske, R., Localized Periodic Patterns for the Non-Symmetric Generalized Swift – Hohenberg Equation, Phys. D, 2005, vol. 208, no. 1–2, pp. 73–95.

    Article  MathSciNet  Google Scholar 

  10. Burke, J. and Knobloch, E., Localized States in the Generalized Swift – Hohenberg Equation, Phys. Rev. E (3), 2006, vol. 73, no. 5, 056211, 15 pp.

    Article  ADS  MathSciNet  Google Scholar 

  11. Champneys, A. R., Subsidiary Homoclinic Orbits to a Saddle-Focus for Reversible Systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1994, vol. 4, no. 6, pp. 1447–1482.

    Article  MathSciNet  Google Scholar 

  12. Champneys, A. R., Homoclinic Orbits in Reversible Systems and Their Applications in Mechanics, Fluids and Optics, Phys. D, 1998, vol. 112, no. 1–2, pp. 158–186.

    Article  MathSciNet  CAS  Google Scholar 

  13. Delshams, A., Ramírez-Ros, R., and Seara, T. M., Splitting of Separatrices in Hamiltonian Systems and Symplectic Maps, in Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995), C. Sim´o (Ed.), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 533, Dordrecht: Kluwer, 1999, pp. 39–54.

    Chapter  Google Scholar 

  14. Devaney, R. L., Homoclinic Orbits in Hamiltonian Systems, J. Differential Equations, 1976, vol. 21, no. 2, pp. 431–438.

    Article  ADS  MathSciNet  Google Scholar 

  15. Devaney, R. L., Blue Sky Catastrophes in Reversible and Hamiltonian Systems, Indiana Univ. Math. J., 1977, vol. 26, no. 2, pp. 247–263.

    Article  MathSciNet  Google Scholar 

  16. Fontich, E. and Vieiro, A., Dynamics near the Invariant Manifolds after a Hamiltonian – Hopf Bifurcation, Commun. Nonlinear Sci. Numer. Simul., 2023, vol. 117, Paper No. 106971, 30 pp.

    Article  MathSciNet  Google Scholar 

  17. Gaivão, J. P. and Gelfreich, V., Splitting of Separatrices for the Hamiltonian – Hopf Bifurcation with the Swift – Hohenberg Equation As an Example, Nonlinearity, 2011, vol. 24, no. 3, pp. 677–698.

    Article  ADS  MathSciNet  Google Scholar 

  18. Glebsky, L. Yu. and Lerman, L. M., On Small Stationary Localized Solutions for the Generalized \(1\)D Swift – Hohenberg Equation, Chaos, 1995, vol. 5, no. 2, pp. 424–431.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  19. Gonchenko, S. V. and Turaev, D. V., On Three Types of Dynamics and the Notion of Attractor, Proc. Steklov Inst. Math., 2017, vol. 297, no. 1, pp. 116–137; see also: Tr. Mat. Inst. Steklova, 2017, vol. 297, pp. 133-157.

    Article  MathSciNet  Google Scholar 

  20. Gonchenko, A. S., Gonchenko, S. V., and Kazakov, A. O., Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.

    Article  ADS  MathSciNet  Google Scholar 

  21. Haragus, M. and Iooss, G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, London: Springer, 2011.

    Book  Google Scholar 

  22. Härterich, J., Cascades of Reversible Homoclinic Orbits to a Saddle-Focus Equilibrium, Phys. D, 1998, vol. 112, no. 1–2, pp. 187–200.

    Article  MathSciNet  Google Scholar 

  23. Hartman, Ph., Ordinary Differential Equations, New York: Wiley, 1964.

    Google Scholar 

  24. Homburg, A. J. and Lamb, J. S. W., Symmetric Homoclinic Tangles in Reversible Systems, Ergodic Theory Dynam. Systems, 2006, vol. 26, no. 6, pp. 1769–1789.

    Article  MathSciNet  Google Scholar 

  25. Homburg, A. J., Lamb, J. S. W., and Turaev, D. V., Symmetric Homoclinic Tangles in Reversible Dynamical Systems Have Positive Topological Entropy, arXiv:2207.10624 (2022).

  26. Homburg, A. J. and Sandstede, B., Homoclinic and Heteroclinic Bifurcations in Vector Fields, in Handbook of Dynamical Systems: Vol. 3, H. W. Broer, F. Takens, B. Hasselblatt (Eds.), Amsterdam: North-Holland, 2010, pp. 379–524.

    Google Scholar 

  27. Ibáñez, S. and Rodrigues, A., On the Dynamics near a Homoclinic Network to a Bifocus: Switching and Horseshoes, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 11, 1530030, 19 pp.

    Article  MathSciNet  Google Scholar 

  28. Iooss, G. and Peroeme, M. C., Perturbed Homoclinic Solutions in Reversible \(1:1\) Resonant Vector Fields, J. Differ. Equ., 1993, vol. 102, no. 1, pp. 62–88.

    Article  ADS  Google Scholar 

  29. Knobloch, J. and Wagenknecht, T., Homoclinic Snaking near a Heteroclinic Cycle in Reversible Systems, Phys. D, 2005, vol. 206, no. 1–2, pp. 82–93.

    Article  MathSciNet  Google Scholar 

  30. Knobloch, J. and Wagenknecht, T., Snaking of Multiple Homoclinic Orbits in Reversible Systems, SIAM J. Appl. Dyn. Syst., 2008, vol. 7, no. 4, pp. 1397–1420.

    Article  ADS  MathSciNet  Google Scholar 

  31. Kozyreff, G. and Tlidi, M., Nonvariational Real Swift – Hohenberg Equation for Biological, Chemical, and Optical Systems, Chaos, 2007, vol. 17, no. 3, 037103, 8 pp.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Lamb, J. S. W. and Stenkin, O. V., Newhouse Regions for Reversible Systems with Infinitely Many Stable, Unstable and Elliptic Periodic Orbits, Nonlinearity, 2004, vol. 17, no. 4, pp. 1217–1244.

    Article  ADS  MathSciNet  Google Scholar 

  33. Lamb, J. S. W. and Roberts, J. A. G., Time-Reversal Symmetry in Dynamical Systems: A Survey, Phys. D, 1998, vol. 112, no. 1–2, pp. 1–39.

    Article  MathSciNet  Google Scholar 

  34. Lerman, L. M. and Umanskii, Ya. L., On the Existence of Separatrix Loops in Four-Dimensional Systems Similar to the Integrable Hamiltonian Systems, J. Appl. Math. Mech., 1983, vol. 47, no. 3, pp. 335–340; see also: Prikl. Mat. Mekh., 1983, vol. 47, no. 3, pp. 395-401.

    Article  MathSciNet  Google Scholar 

  35. Lerman, L. M., Complex Dynamics and Bifurcations in a Hamiltonian System Having a Transversal Homoclinic Orbit to a Saddle Focus, Chaos, 1991, vol. 1, no. 2, pp. 174–180.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  36. Lerman L. M., Homo- and Heteroclinic Orbits, Hyperbolic Subsets in a One-Parameter Unfolding of a Hamiltonian System with Heteroclinic Contour with Two Saddle-Foci, Regul. Chaotic Dyn., 1997, vol. 2, no. 3–4, pp. 139–155.

    MathSciNet  Google Scholar 

  37. Lerman, L. M., Dynamical Phenomena near a Saddle-Focus Homoclinic Connection in a Hamiltonian System, J. Statist. Phys., 2000, vol. 101, no. 1–2, pp. 357–372.

    Article  ADS  MathSciNet  Google Scholar 

  38. Lerman, L. M. and Turaev, D. V., Breakdown of Symmetry in Reversible Systems, Regul. Chaotic Dyn., 2012, vol. 17, no. 3–4, pp. 318–336.

    Article  ADS  MathSciNet  Google Scholar 

  39. Lychagin, V. V., On Sufficient Orbits of a Group of Contact Diffeomorphisms, Math. USSR-Sb., 1977, vol. 33, no. 2, pp. 223–242; see also: Mat. Sb. (N. S.), 1977, vol. 104(146), no. 2(10), pp. 248–270, 335.

    Article  MathSciNet  Google Scholar 

  40. Mel’nikov, V. K., On the Stability of a Center for Time-Periodic Perturbations, Trans. Moscow Math. Soc., 1963, vol. 12, pp. 1–57; see also: Tr. Mosk. Mat. Obs., 1963, vol. 12, pp. 3-52.

    MathSciNet  Google Scholar 

  41. Ovsyannikov, I. M. and Shilnikov, L. P., Systems with a Homoclinic Curve of Multidimensional Saddle-Focus Type, and Spiral Chaos, Math. USSR Sb., 1992, vol. 73, no. 2, pp. 415–443; see also: Mat. Sb., 1991, vol. 182, no. 7, pp. 1043-1073.

    Article  MathSciNet  Google Scholar 

  42. Sandstede, B., Instability of Localized Buckling Modes in a One-Dimensional Strut Model, Philos. Trans. Roy. Soc. London Ser. A, 1997, vol. 355, no. 1732, pp. 2083–2097.

    Article  ADS  MathSciNet  Google Scholar 

  43. Sevryuk, M. B., Reversible Systems, Lecture Notes in Math., vol. 1211, Berlin: Springer, 2006.

    Google Scholar 

  44. Shilnikov, L. P., A Case of the Existence of a Denumerable Set of Periodic Motions, Soviet Math. Dokl., 1965, vol. 6, pp. 163–166; see also: Dokl. Akad. Nauk SSSR, 1965, vol. 160, pp. 558-561.

    Google Scholar 

  45. Shil’nikov, L. P., A Contribution to the Problem of the Structure of an Extended Neighbourhood of a Rough Equilibrium State of Saddle-Focus Type, Math. USSR-Sb., 1970, vol. 10, no. 1, pp. 91–102; see also: Mat. Sb. (N. S.), 1970, vol. 81(123), no. 1, pp. 92-103.

    Article  Google Scholar 

  46. Shilnikov, L. P., Existence of a Countable Set of Periodic Motions in a Four-Dimensional Space in an Extended Neighborhood of a Saddle-Focus, Soviet Math. Dokl., 1967, vol. 8, no. 1, pp. 54–58; see also: Dokl. Akad. Nauk SSSR, 1967, vol. 172, no. 1, pp. 54-57.

    MathSciNet  Google Scholar 

  47. Shilnikov, L. P., Shilnikov, A. L., Turaev, D., and Chua, L. O., Methods of Qualitative Theory in Nonlinear Dynamics: Part 1, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 4, River Edge, N.J.: World Sci., 1998.

    Book  Google Scholar 

  48. Swift, J. and Hohenberg, P. C., Hydrodynamic Fluctuations at the Convective Instability, Phys. Rev. A, 1977, vol. 15, no. 1, pp. 319–328.

    Article  ADS  Google Scholar 

  49. Tlidi, M., Georgiou, M., and Mandel, P., Transverse Patterns in Nascent Optical Bistability, Phys. Rev. A, 1993, vol. 48, no. 6, pp. 4605–4609.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Tresser, C., About Some Theorems by L. P. Shil’nikov, Ann. Inst. H. Poincaré Phys. Théor., 1984, vol. 40, no. 4, pp. 441–461.

    MathSciNet  Google Scholar 

  51. Vanderbauwhede, A., Heteroclinic Cycles and Periodic Orbits in Reversible Systems, in Ordinary and Delay Differential Equations (Edinburg, TX, 1991), J. Wiener, J. K. Hale, (Eds.), Pitman Res. Notes Math. Ser., vol. 272, Harlow: Longman Sci. Tech., 1992, pp. 250–253.

    Google Scholar 

  52. Vanderbauwhede, A. and Fiedler, B., Homoclinic Period Blow-Up in Reversible and Conservative Systems, Z. Angew. Math. Phys., 1992, vol. 43, no. 2, pp. 292–318.

    Article  MathSciNet  Google Scholar 

  53. Woods, P. D. and Champneys, A. R., Heteroclinic Tangles and Homoclinic Snaking in the Unfolding of a Degenerate Reversible Hamiltonian – Hopf Bifurcation, Phys. D, 1999, vol. 129, no. 3–4, pp. 147–170.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank D. Turaev for the valuable discussion that allowed us to understand more deeply some points of our work.

Funding

The authors acknowledge a financial support from the Russian Science Foundation (grant 22-11-00027). Numerical simulations of the paper were supported partially by Agreement 0729-2020-0036 of the Ministry of Science and Higher Education of the Russian Federation (L.M.L and K.N.T). The work of K.N.T. when examining the nonvariational Swift-Hohenberg equation was supported by the Russian Science Foundation (project 23-71-30008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikolay E. Kulagin, Lev M. Lerman or Konstantin N. Trifonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

34C23, 34C37, 37G40

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulagin, N.E., Lerman, L.M. & Trifonov, K.N. Twin Heteroclinic Connections of Reversible Systems. Regul. Chaot. Dyn. 29, 40–64 (2024). https://doi.org/10.1134/S1560354724010040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354724010040

Keywords

Navigation