Skip to main content
Log in

Numerical Study of Discrete Lorenz-Like Attractors

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider a homotopic to the identity family of maps, obtained as a discretization of the Lorenz system, such that the dynamics of the last is recovered as a limit dynamics when the discretization parameter tends to zero. We investigate the structure of the discrete Lorenz-like attractors that the map shows for different values of parameters. In particular, we check the pseudohyperbolicity of the observed discrete attractors and show how to use interpolating vector fields to compute kneading diagrams for near-identity maps. For larger discretization parameter values, the map exhibits what appears to be genuinely-discrete Lorenz-like attractors, that is, discrete chaotic pseudohyperbolic attractors with a negative second Lyapunov exponent. The numerical methods used are general enough to be adapted for arbitrary near-identity discrete systems with similar phase space structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. In 3D flow systems bifurcations of homoclinic tangencies inevitably lead to the appearance of stable periodic orbits [17, 18], thus, an attractor cannot be pseudohyperbolic in principle.

  2. This condition means that any possible contraction in \(E_{1}(x)\) is uniformly weaker than any contraction in \(E_{2}(x)\), and any expansion in \(E_{1}(x)\) is uniformly stronger than any possible expansion in \(E_{2}(x)\). Note that it guarantees the persistence of the invariant families of linear subspaces \(E_{1}\) and \(E_{2}\) (and the attractor \({\cal A}\)) under \(\mathcal{C}^{1}\) perturbations of the system.

References

  1. Afraimovich, V. S., Bykov, V. V., and Shilnikov, L. P., The Origin and Structure of the Lorenz Attractor, Dokl. Akad. Nauk SSSR, 1977, vol. 234, no. 2, pp. 336–339 (Russian).

    ADS  MathSciNet  Google Scholar 

  2. Afraimovich, V. S., Bykov, V. V., and Shil’nikov, L. P., On Attracting Structurally Unstable Limit Sets of Lorenz Attractor Type, Trans. Mosc. Math. Soc., 1982, vol. 44, pp. 153–216; see also: Trudy Moskov. Mat. Obshch., 1982, vol. 44, pp. 150-212.

    MathSciNet  Google Scholar 

  3. Barrio, R., Blesa, F., Serrano, S., and Shilnikov, A., Global Organization of Spiral Structures in Biparameter Space of Dissipative Systems with Shilnikov Saddle-Foci, Phys. Rev. E, 2011, vol. 84, no. 3, 035201, 5 pp.

    Article  ADS  Google Scholar 

  4. Barrio, R., Shilnikov, A., and Shilnikov, L., Kneadings, Symbolic Dynamics and Painting Lorenz Chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2012, vol. 22, no. 4, 1230016, 24 pp.

    Article  MathSciNet  Google Scholar 

  5. Barros, D., Bonatti, Ch., and Pacifico, M. J., Up, Down, Two-Sided Lorenz Attractor, Collisions, Merging and Switching, arXiv:2101.07391 (2021).

  6. Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory, Meccanica, 1980, vol. 15, no. 1, pp. 9–20.

    Article  ADS  Google Scholar 

  7. Bykov, V. V., On the Generation of a Non-Trivial Hyperbolic Set from a Contour Formed by Separatrices of Saddles, in Methods of Qualitative Theory of Differential Equations, E. A. Leontovich-Andronova (Ed.), Gorky: Gorky Gos. Univ., 1988, pp. 22–32 (Russian).

    Google Scholar 

  8. Bykov, V. V., The Bifurcations of Separatrix Contours and Chaos, Phys. D, 1993, vol. 62, no. 1–4, pp. 290–299.

    Article  MathSciNet  Google Scholar 

  9. Bykov, V. V., The Generation of Periodic Motions from the Separatrix Contour of a Three-Dimensional System, Uspekhi Mat. Nauk, 1977, vol. 32, no. 6(198), pp. 213–214 (Russian).

    ADS  MathSciNet  Google Scholar 

  10. Bykov, V. V. and Shilnikov, A. L., On the Boundaries of the Domain of Existence of the Lorenz Attractor, in Methods of Qualitative Theory and Theory of Bifurcations, L. P. Shil’nikov et al. (Ed.), Gorky: Gorky Gos. Univ., 1989, pp. 151–159 (Russian).

    Google Scholar 

  11. Bykov, V. V. and Shilnikov, A. L., On the Boundaries of the Domain of Existence of the Lorenz Attractor, Selecta Math. Soviet., 1992, vol. 11, no. 4, pp. 375–382.

    MathSciNet  Google Scholar 

  12. Capiński, M. J., Turaev, D., and Zgliczyński, P., Computer Assisted Proof of the Existence of the Lorenz Attractor in the Shimizu – Morioka System, Nonlinearity, 2018, vol. 31, no. 12, pp. 5410–5440.

    Article  ADS  MathSciNet  Google Scholar 

  13. Creaser, J. L., Krauskopf, B., and Osinga, H. M., Finding First Foliation Tangencies in the Lorenz System, SIAM J. Appl. Dyn. Syst., 2017, vol. 16, no. 4, pp. 2127–2164.

    Article  MathSciNet  Google Scholar 

  14. Dhooge, A., Govaerts, W., Kuznetsov, Yu. A., Meijer, H. G. E., and Sautois, B., New Features of the Software MatCont for Bifurcation Analysis of Dynamical Systems, Math. Comput. Model. Dyn. Syst., 2008, vol. 14, no. 2, pp. 147–175.

    Article  MathSciNet  Google Scholar 

  15. Eilertsen, J. and Magnan, J., On the Chaotic Dynamics Associated with the Center Manifold Equations of Double-Diffusive Convection near a Codimension-Four Bifurcation Point at Moderate Thermal Rayleigh Number, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2018, vol. 28, no. 8, 1850094, 24 pp.

    Article  MathSciNet  Google Scholar 

  16. Eilertsen, J. S. and Magnan, J. F., Asymptotically Exact Codimension-Four Dynamics and Bifurcations in Two-Dimensional Thermosolutal Convection at High Thermal Rayleigh Number: Chaos from a Quasi-Periodic Homoclinic Explosion and Quasi-Periodic Intermittency, Phys. D, 2018, vol. 382/383, pp. 1–21.

    Article  MathSciNet  Google Scholar 

  17. Gavrilov, N. K. and Shilnikov, L. P., On Three-Dimensional Dynamical Systems Close to Systems with a Structurally Unstable Homoclinic Curve: 1, Math. USSR-Sb., 1972, vol. 17, no. 4, pp. 467–485; see also: Mat. Sb. (N. S.), 1972, vol. 88(130), no. 4(8), pp. 475-492.

    Article  Google Scholar 

  18. Gavrilov, N. K. and Shilnikov, L. P., On Three-Dimensional Dynamical Systems Close to Systems with a Structurally Unstable Homoclinic Curve: 2, Math. USSR-Sb., 1973, vol. 19, no. 1, pp. 139–156; see also: Mat. Sb. (N. S.), 1973, vol. 90(132), no. 1, pp. 139-156.

    Article  Google Scholar 

  19. Gelfreich, V. and Vieiro, A., Interpolating Vector Fields for Near Identity Maps and Averaging, Nonlinearity, 2018, vol. 31, no. 9, pp. 4263–4289.

    Article  ADS  MathSciNet  Google Scholar 

  20. Glendinning, P. and Sparrow, C., \(T\)-Points: A Codimension Two Heteroclinic Bifurcation, J. Statist. Phys., 1986, vol. 43, no. 3–4, pp. 479–488.

    Article  ADS  MathSciNet  Google Scholar 

  21. Glendinning, P. and Sparrow, C., Prime and Renormalisable Kneading Invariants and the Dynamics of Expanding Lorenz Maps, Phys. D, 1993, vol. 62, no. 1–4, pp. 22–50.

    Article  MathSciNet  Google Scholar 

  22. Gonchenko, A. S., Gonchenko, S. V., and Kazakov, A. O., Richness of Chaotic Dynamics in the Nonholonomic Model of Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.

    Article  ADS  MathSciNet  Google Scholar 

  23. Gonchenko, A. S., Gonchenko, S. V., Kazakov, A. O., and Kozlov, A. D., Elements of Contemporary Theory of Dynamical Chaos: A Tutorial: Part 1. Pseudohyperbolic Attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2018, vol. 28, no. 11, 1830036, 29 pp.

    Article  MathSciNet  Google Scholar 

  24. Gonchenko, A. S. and Samylina, E. A., On the Region of Existence of a Discrete Lorenz Attractor in the Nonholonomic Model of a Celtic Stone, Radiophys. Quantum El., 2019, vol. 62, no. 5, pp. 369–384; see also: Izv. Vyssh. Uchebn. Zaved. Radiofizika, 2019, vol. 62, no. 5, pp. 412-428.

    Article  ADS  Google Scholar 

  25. Gonchenko, S. V., Kazakov, A. O., Turaev, D. V., and Kaynov, M. N., On Methods for Verification of the Pseudohyperbolicity of Strange Attractors, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 2021, vol. 29, no. 1, pp. 160–185 (Russian).

    Google Scholar 

  26. Gonchenko, S. V., Shilnikov, L. P., and Turaev, D. V., Dynamical Phenomena in Multidimensional Systems with a Structurally Unstable Homoclinic Poincaré Curve, Russian Acad. Sci. Dokl. Math., 1993, vol. 47, no. 3, pp. 410–415; see also: Ross. Akad. Nauk Dokl., 1993, vol. 330, no. 2, pp. 144-147.

    MathSciNet  Google Scholar 

  27. Gonchenko, S. V., Turaev, D. V., and Shil’nikov, L. P., On the Existence of Newhouse Regions in a Neighborhood of Systems with a Structurally Unstable Homoclinic Poincaré Curve (the Multidimensional Case), Dokl. Math., 1993, vol. 47, no. 2, pp. 268–273; see also: Dokl. Akad. Nauk, 1993, vol. 329, no. 4, pp. 404-407.

    MathSciNet  Google Scholar 

  28. Gonchenko, S. and Gonchenko, A., On Discrete Lorenz-Like Attractors in Three-Dimensional Maps with Axial Symmetry, Chaos, 2023, vol. 33, no. 12, Paper No. 123104, 19 pp.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  29. Gonchenko, S., Gonchenko, A., Kazakov, A., and Samylina, E., On Discrete Lorenz-Like Attractors, Chaos, 2021, vol. 31, no. 2, 023117, 20 pp.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  30. Gonchenko, S., Karatetskaia, E., Kazakov, A., and Kruglov, V., Conjoined Lorenz Twins: A New Pseudohyperbolic Attractor in Three-Dimensional Maps and Flows, Chaos, 2022, vol. 32, no. 12, Paper No. 121107, 13 pp.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  31. Gonchenko, S. V., Kazakov, A. O., and Turaev, D. V., Wild Pseudohyperbolic Attractor in a Four-Dimensional Lorenz System, Nonlinearity, 2021, vol. 34, no. 4, pp. 2018–2047.

    Article  ADS  MathSciNet  Google Scholar 

  32. Gonchenko, S. V., Ovsyannikov, I. I., Simó, C., and Turaev, D., Three-Dimensional Hénon-Like Maps and Wild Lorenz-Like Attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, vol. 15, no. 11, pp. 3493–3508.

    Article  MathSciNet  Google Scholar 

  33. Gonchenko, S. V., Shilnikov, L. P., and Turaev, D. V., On Dynamical Properties of Multidimensional Diffeomorphisms from Newhouse Regions: 1, Nonlinearity, 2008, vol. 21, no. 5, pp. 923–972.

    Article  ADS  MathSciNet  Google Scholar 

  34. Gonchenko, S. V., Gonchenko, A. S., Ovsyannikov, I. I., and Turaev, D. V., Examples of Lorenz-Like Attractors in Hénon-Like Maps, Math. Model. Nat. Phenom., 2013, vol. 8, no. 5, pp. 48–70.

    Article  MathSciNet  Google Scholar 

  35. Gonchenko, S. V., Shil’nikov, L. P., and Turaev, D. V., Dynamical Phenomena in Systems with Structurally Unstable Poincaré Homoclinic Orbits, Chaos, 1996, vol. 6, no. 1, pp. 15–31.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  36. Guckenheimer, J., A Strange, Strange Attractor, in The Hopf Bifurcation and Its Applications, J. E. Marsden, M. McCracken (Eds.), Appl. Math. Sci., vol. 19, New York: Springer, 1976, pp. 368–381.

    Chapter  Google Scholar 

  37. Guckenheimer, J. and Williams, R. F., Structural Stability of Lorenz Attractors, Inst. Hautes Études Sci. Publ. Math., 1979, no. 50, pp. 59–72.

    Article  MathSciNet  Google Scholar 

  38. Kuptsov, P. V., Fast Numerical Test of Hyperbolic Chaos, Phys. Rev. E, 2012, vol. 85, no. 1, 015203(R), 4 pp.

    Article  ADS  Google Scholar 

  39. Kuptsov, P. V. and Kuznetsov, S. P., Lyapunov Analysis of Strange Pseudohyperbolic Attractors: Angles between Tangent Subspaces, Local Volume Expansion and Contraction, Regul. Chaotic Dyn., 2018, vol. 23, no. 7–8, pp. 908–932.

    Article  ADS  MathSciNet  Google Scholar 

  40. Lorenz, E. N., Deterministic Nonperiodic Flow, J. Atmos. Sci., 1963, vol. 20, no. 2, pp. 130–141.

    Article  ADS  MathSciNet  Google Scholar 

  41. Luzzatto, S. and Tucker, W., Non-Uniformly Expanding Dynamics in Maps with Singularities and Criticalities, Inst. Hautes Études Sci. Publ. Math., 1999, no. 89, pp. 179–226.

    Article  MathSciNet  Google Scholar 

  42. Luzzatto, S. and Viana, M., Positive Lyapunov Exponents for Lorenz-Like Families with Criticalities, in Géométrie complexe et systèmes dynamiques: Colloque en l’honneur d’Adrien Douady (Orsay, 1995), M. Flexor, P. Sentenac, J.-Ch. Yoccoz (Eds.), Astérisque, Paris: Soc. Math. France, 2000, pp. 201–237.

    Google Scholar 

  43. Lyubimov, D. V. and Zaks, M. A., Two Mechanisms of the Transition to Chaos in Finite-Dimensional Models of Convection, Phys. D, 1983, vol. 9, no. 1–2, pp. 52–64.

    Article  MathSciNet  Google Scholar 

  44. Malkin, M. I., Periodic Orbits, Entropy, and Rotation Sets of Continuous Mappings of the Circle, Ukr. Math. J., 1983, vol. 35, no. 3, pp. 280–285; see also: Ukrain. Mat. Zh., 1983, vol. 35, no. 3, pp. 327-332.

    Article  MathSciNet  Google Scholar 

  45. Malkin, M. I., Rotation Intervals and the Dynamics of Lorenz Type Mappings, in Methods of the Qualitative Theory of Differential Equations, E. A. Leontovich (Ed.), Gorky: GGU, 1986, pp. 122–139 (Russian).

    Google Scholar 

  46. Malkin, M. I., Rotation Intervals and the Dynamics of Lorenz Type Mappings, Selecta Math. Soviet., 1991, vol. 10, no. 3, pp. 265–275.

    MathSciNet  Google Scholar 

  47. Milnor, J. W. and Thurston, W. P., On Iterated Maps of the Interval, Prinseton: Prinseton Univ. Press, 1977.

    Google Scholar 

  48. Milnor, J. and Thurston, W., On Iterated Maps of the Interval, in Dynamical Systems (College Park, Md., 1986/87), Lecture Notes in Math., vol. 1342, Berlin: Springer, 1988, pp. 465–563.

    Google Scholar 

  49. Morales, C. A., Pacifico, M. J., and Pujals, E. R., Robust Transitive Singular Sets for \(3\)-Flows Are Partially Hyperbolic Attractors or Repellers, Ann. of Math. (2), 2004, vol. 160, no. 2, pp. 375–432.

    Article  MathSciNet  Google Scholar 

  50. Newhouse, Sh. E., The Abundance of Wild Hyperbolic Sets and Nonsmooth Stable Sets for Diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 1979, no. 50, pp. 101–151.

    Article  MathSciNet  Google Scholar 

  51. Ovsyannikov, I. I. and Turaev, D. V., Analytic Proof of the Existence of the Lorenz Attractor in the Extended Lorenz Model, Nonlinearity, 2017, vol. 30, no. 1, pp. 115–137.

    Article  ADS  MathSciNet  Google Scholar 

  52. Pusuluri, K., Meijer, H. G. E., and Shilnikov, A. L., Homoclinic Puzzles and Chaos in a Nonlinear Laser Model, Commun. Nonlinear Sci. Numer. Simul., 2021, vol. 93, Paper No. 105503, 25 pp.

    Article  MathSciNet  Google Scholar 

  53. Pusuluri, K. and Shilnikov, A., Homoclinic Chaos and Its Organization in a Nonlinear Optics Model, Phys. Rev. E, 2018, vol. 98, no. 4, 040202, 5 pp.

    Article  ADS  CAS  Google Scholar 

  54. Rand, D., The Topological Classification of Lorenz Attractors, Math. Proc. Cambridge Philos. Soc., 1978, vol. 83, no. 3, pp. 451–460.

    Article  ADS  MathSciNet  Google Scholar 

  55. Rucklidge, A. M., Chaos in Models of Double Convection, J. Fluid Mech., 1992, vol. 237, pp. 209–229.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  56. Shilnikov, A. L., Bifurcation and Chaos in the Morioka – Shimizu System, Selecta Math. Soviet., 1991, vol. 10, no. 2, pp. 105–117.

    MathSciNet  Google Scholar 

  57. Shilnikov, A. L., Bifurcation and Chaos in the Morioka – Shimizu System, in Methods of Qualitative Theory of Differential Equations, E. A. Leontovich et al. (Ed.), Gorky: Gorky Gos. Univ., 1986, pp. 180–193 (Russian).

    Google Scholar 

  58. Shil’nikov, A. L., Shil’nikov, L. P., and Turaev, D. V., Normal Forms and Lorenz Attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1993, vol. 3, no. 5, pp. 1123–1139.

    Article  MathSciNet  Google Scholar 

  59. Shilnikov, A. L., On Bifurcations of the Lorenz Attractor in the Shimizu – Morioka Model, Phys. D, 1993, vol. 62, no. 1–4, pp. 338–346.

    Article  MathSciNet  Google Scholar 

  60. Shilnikov, L. P., Bifurcation Theory and the Lorenz Model, in J. Marsden and M. McCraken Bifurcation of Cycle Birth and Its Applications, Moscow: Mir, 1980, pp. 317–335 (Russian).

    Google Scholar 

  61. Tatjer, J. C., Three-Dimensional Dissipative Diffeomorphisms with Homoclinic Tangencies, Ergodic Theory Dynam. Systems, 2001, vol. 21, no. 1, pp. 249–302.

    Article  MathSciNet  Google Scholar 

  62. Tucker, W., The Lorenz Attractor Exists, C. R. Acad. Sci. Paris Sér. 1 Math., 1999, vol. 328, no. 12, pp. 1197–1202.

    Article  MathSciNet  Google Scholar 

  63. Turaev, D. V. and Shil’nikov, L. P., An Example of a Wild Strange Attractor, Sb. Math., 1998, vol. 189, no. 1–2, pp. 291–314; see also: Mat. Sb., 1998, vol. 189, no. 2, pp. 137-160.

    Article  MathSciNet  Google Scholar 

  64. Turaev, D. V. and Shil’nikov, L. P., Pseudohyperbolicity and the Problem of the Periodic Perturbation of Lorenz-Type Attractors, Dokl. Math., 2008, vol. 77, no. 1, pp. 17–21; see also: Dokl. Akad. Nauk, 2008, vol. 418, no. 1, pp. 23-27.

    Article  MathSciNet  Google Scholar 

  65. Williams, R., The Structure of Lorenz Attractors, Inst. Hautes Études Sci. Publ. Math., 1979, no. 50, pp. 73–99.

    Article  MathSciNet  Google Scholar 

  66. Xing, T., Barrio, R., and Shilnikov, A., Symbolic Quest into Homoclinic Chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2014, vol. 24, no. 8, 1440004, 20 pp.

    Article  MathSciNet  Google Scholar 

Download references

Funding

A. V. and A. M. have been supported by the Spanish grant PID2021-125535NB-I00 (MICINN/AEI/FEDER, UE) and the Catalan grant 2021-SGR-01072. A. V. also acknowledges the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M). The work of A. K. and K. Z. (numerical verification of pseudohyperbolicity conditions) has been supported by the RSF grant 23-71-30008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexey Kazakov, Ainoa Murillo, Arturo Vieiro or Kirill Zaichikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

37G35, 37D30

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, A., Murillo, A., Vieiro, A. et al. Numerical Study of Discrete Lorenz-Like Attractors. Regul. Chaot. Dyn. 29, 78–99 (2024). https://doi.org/10.1134/S1560354724010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354724010064

Keywords

Navigation