Skip to main content
Log in

The Structure of the Gakkel Ridge: Geological and Geophysical Data

  • Published:
Geotectonics Aims and scope

Abstract

In 2011‒2020 a significant number of seismic lines were carried out in the Eurasian Basin of the Arctic Ocean, which made it possible to study the structure of the junction zones of the Gakkel Ridge with the Nansen and Amundsen basins on a number of profiles. During 2019‒2020 15 sections of the Gakkel Ridge and its rift valley were studied using a sub-bottom profiler and seismo-acoustic profiling. New data on the relief of the basement, as well as the use of databases of bathymetry, gravity, and magnetic anomalies updated at VNIIOkeangeologia, made it possible to calculate the magnetization of the rocks of the Gakkel Ridge along a number of profiles crossing the ridge and to perform model calculations of the structure of the Earth’s crust using a complex of geological and geophysical data in the area of the southeastern termination of the ridge. The Gakkel Ridge is a structure that was isolated in the Early Oligocene (34 Ma)–Early Miocene (23 Ma) in the process of radical restructuring of the spreading kinematics in the existing ocean basins in the regions of the North Atlantic and the Arctic. The values of the calculated magnetization of the magnetic layer of the Earth’s crust show that this layer is partly composed of oceanic basalts, but mainly of deep-originated rocks, gabbro, and peridotites that were brought to the surface during detachment accompanying spreading. The Laptev Sea continuation of the rift valley of the Gakkel Ridge to the south of the caldera passes above many kilometers of sediments, at the base of which sedimentary rocks of Cretaceous and Late Jurassic age occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Arctic Basin (Geology and Morphology), Ed. by V. D. Kaminsky (VNIIOkeangeologiya, St. Petersburg, 2017) [in Russian].

  2. V. M. Gordin, E. A. Nazarova, and K. V. Popov, “A generalized petromagnetic model for oceanic lithosphere,” Okeanologiya 33 (1), 139–143 (1993).

    Google Scholar 

  3. L. A. Daragan-Sushchova, O. V. Petrov, Yu. I. Daragan-Sushchov, D. I. Leont’ev, and I. N. Savel’ev, “History of formation of the Eurasian Basin (the Arctic Basin) based on seismic data,” Regional. Geol. Metallogen., No. 84, 25–44 (2020).

  4. E. P. Dubinin and S. A. Ushakov, Oceanic Rifting (GEOS, Moscow, 2001) [in Russian].

    Google Scholar 

  5. A. M. Karasik, “Main features of development history and structure of the Arctic basin bottom based on aeromagnetic data,” in Marine Geology, Sedimentology, Sedimentary Petrography and Geology of Ocean, Ed. by I. M. Varentsov (Nedra, Leningrad, 1980), pp. 178‒193.

    Google Scholar 

  6. T. A. Kirillova-Pokrovskaya, “Development of an updated geological model of the Laptev Sea and adjacent deep-water zones for a more accurate assessment of its hydrocarbon potential,” Razved. Okhrana Nedr, No. 10, 30-38 (2017).

    Google Scholar 

  7. A. A. Kremenetskiy, A. G. Pilitsyn, L. I. Veremeeva, A. F. Morozov, O. V. Petrov, and E. I. Petrov, “Circumpolar Arctic: Basement evolution, rifting and hydrocarbon potential,” Regional. Geol. Metallogen., No. 83, (14–32 (2020).

  8. L. I. Lobkovsky, M. V. Kononov, and E. V. Shipilov, “Geodynamic causes of the emergence and termination of Cenozoic shear deformations in the Khatanga–Lomonosov Fault Zone (Arctic),” Dokl. Earth Sci. 492, 356–360 (2020).

    Article  ADS  CAS  Google Scholar 

  9. D. M. Pechersky and L. V. Tikhonov, “Petromagnetic properties of basalts in the Atlantic and Pacific oceans,” Izv. Akad. Nauk SSSR. Ser. Fiz. Zemli, No. 4, 79–90 (1983).

    Google Scholar 

  10. A. L. Piskarev, Deep Marine Geophysics (Development of Interpretation Methods) (Nedra, Leningrad, 1991) [in Russian].

    Google Scholar 

  11. A. L. Piskarev, Petrophysical models of the Earth’s crust in the Arctic Ocean, in Tr. NIIGA-VNIIOkeangeologiya. Vol. 203 (VNIIOkeangeologiya, St. Petersburg, 2004).

  12. A. L. Piskarev, G. P. Avetisov, A. A. Kireev, G. S. Kazanin, V. A. Poselov, V. A. Savin, O. E. Smirnov, and D. V. Elkina, “Structure of the Laptev Sea shelf–Eurasian Basin transition zone (Arctic Ocean),” Geotectonics 52 (6), 589–608 (2018).

    Article  ADS  CAS  Google Scholar 

  13. A. L. Piskarev, E. G. Astafurova, I. V. Belyaev, E. G. Zhemchuzhnikov, and L. V. Podgornykh, “Long-term variations in the magnetization and density of the oceanic crust,” Dokl. Akad. Nauk 360 (2), 574–578 (1998).

    Google Scholar 

  14. Nature of Magnetic Anomalies and Structure of Oceanic Crust, Ed. by A. M. Gorodnitsky (VNIRO, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  15. P. V. Rekant and E. A. Gusev, “Sediments in the Gakkel Ridge rift zone (Arctic Ocean): Structure and history,” Russ. Geol. Geophys. 57 (9), 1283–1287 (2016).

    Article  ADS  Google Scholar 

  16. S. Yu. Sokolov, Doctoral Dissertation in Geology and Mineralogy (GIN RAN, Moscow, 2018).

  17. P. J. Barton, “The relationship between seismic velocity and density in the continental crust—a useful constraint?” Geophys. J. Royal Astron. Soc. 87 (1), 195‒208 (1986).

    Article  ADS  Google Scholar 

  18. D. K. Blackman, J. P. Canales, and A. Harding, “Geophysical signatures of oceanic core complexes,” Geophys. J. Int. 178 (2), 593–613 (2009).

    Article  ADS  Google Scholar 

  19. U. Bleil and N. Peterson, “Variations in magnetization intensity and law-temperature titanomagnetite oxidation of ocean floor basalts,” Nature 301, 384–388 (1983).

    Article  ADS  CAS  Google Scholar 

  20. E. Bonatti, “Serpentinite protrusions in the oceanic crust,” Earth Planet. Sci. Lett. 32 (2), 107‒113 (1976).

    Article  ADS  Google Scholar 

  21. M. Cannat, D. Sauter, J. Escartin, L. Lavier, S. Picazo, “Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges,” Earth Planet. Sci. Lett. 288, 174–183 (2009).

    Article  ADS  CAS  Google Scholar 

  22. J. R. Cochran, “Seamount volcanism along the Gakkel Ridge, Arctic Ocean,” Geophys. J 174, 1153–1173 (2008).

    Article  Google Scholar 

  23. L. Y. Faust, “Seismic velocity as a function of depth and geologic time,” Geophysics 16, 192–206 (1951). https://doi.org/10.1007/s41063-015-0006-8

    Article  ADS  Google Scholar 

  24. C. Gaina, A. M. Nikishin, and E. I. Petrov, “Ultraslow spreading, ridge relocation and compressional events in the East Arctic region: a link to the Eurekan orogeny?” Arktos 16 (1), (2015).

  25. G. H. F. Gardner, L. W. Gardner, and A. R. Gregory, “Formation velocity and density—the diagnostic basics for stratigraphic traps,” Geophysics 39, 770–780 (1974).

    Article  ADS  Google Scholar 

  26. Geologic Structures of the Arctic Basin, Ed. by A. Piskarev, V. Poselov, and V. Kaminsky (Springer Nature, 2019).

    Google Scholar 

  27. L. Gernigon, D. Franke, L. Geoffroy, C. Schiffer, G. R. Foulger, and M. Stoker, “Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea,” Earth-Sci. Rev. 206, 1–37 (2020).

    Article  Google Scholar 

  28. V. Y. Glebovsky, V. D. Kaminsky, A. N. Minakov, S. A. Merkur’ev, V. A. Childers, and J. M. Brozena, “Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field,” Geotectonics 4, 21–42 (2006). https://doi.org/10.1134/S0016852106040029

    Article  Google Scholar 

  29. W. Jokat and U. Micksch, “Sedimentary structure of the Nansen and Amundsen basins, Arctic Ocean,” Geophys. Rev. Lett. 31, 1–4 (2004).

    Article  Google Scholar 

  30. W. Jokat, P. Lehmann, D. Damaske, et al., “Magnetic signature of North-East Greenland, the Morris Jesup Rise, the Yermak Plateau, the central Fram Strait: Constraints for the rift/drift history between Greenland and Svalbard since the Eocene,” Tectonophysics 691, 98–109 (2015).

    Article  ADS  Google Scholar 

  31. W. Jokat and M. C. Schmidt-Aursch, “Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean,” Geophys. J. 168, 983–998 (2007).

    Article  ADS  Google Scholar 

  32. M. K. Kos’ko and G. V. Trufanov, “Middle Cretaceous to Eopleistocene sequences on the New Siberian islands: an approach to interpret offshore seismic,” Marin. Petrol. Geol 19, 901–919 (2002).

    Article  ADS  Google Scholar 

  33. R. Lutz, D. Franke, K. Berglar, I. Heyde, B. Schreckenberger, P. Klitzke, and W. H. Geissler, “Evidence for mantle exhumation since the early evolution of the slowspreading Gakkel Ridge, Arctic Ocean,” J. Geodynam. 118, 154–165 (2018).

    Article  ADS  Google Scholar 

  34. C. J. McLeod, R. C. Searle, B. J. Murton, J. F. Casey, C. Mallows, S. C. Unsworth, K. L. Achenbach, and M. Harris, “Life cycle of oceanic core complexes,” Earth Planet. Sci. Lett. 287, 333–344 (2009).

    Article  ADS  Google Scholar 

  35. D. C. Mosher, J. W. Shimeld, D. Hutchinson, et al., “Canada Basin revealed,” in Arctic Technology Conference Paper (Houston. USA, 2012).

  36. J. Blackman and H. Brinkhuis, et al., “The Cenozoic palaeoenvironment of the Arctic Ocean,” Nature 441, 601–606 (2006).

    Article  ADS  Google Scholar 

  37. A. M. Nikishin, E. I. Petrov, N. A. Malyshev, and V. P. Ershova, “Rift systems of the Russian Eastern Arctic Shelf and Arctic deep water basins: Link between geological history and geodynamics,” Geodynam. Tectonophys. 8 (1), 11–43 (2017).

    Article  Google Scholar 

  38. K. Okino, K. Matsuda, D. M. Christie, Y. Nogi, and K. Koizumi, “Development of oceanic detachment and asymmetric spreading at the Australian‒Antarctic Discordance,” Geochem., Geophys., Geosyst. 5 (12), 1–22 (2004).

    Article  Google Scholar 

  39. A. Piskarev and D. Elkina, “Giant caldera in the Arctic Ocean: Evidence of the catastrophic eruptive event,” Nature Sci. 7, 1–8 (2017).

    Google Scholar 

  40. A. Poirier and C. Hillaire Marcel, “Improved Os-isotope stratigraphy of the Arctic Ocean,” Geophys. Rev. Lett. 38, L14607 (2011). https://doi.org/10.1029/2011GL047953

    Article  ADS  CAS  Google Scholar 

  41. T. J. Reston and C. R. Ranero, “The 3D geometry of detachment faulting at mid-ocean ridges,” Geochem. Geophys. Geosyst. 12 (7), 1–19 (2011).

    Article  Google Scholar 

  42. M. Richter, O. Nebel, R. Maas, B. Mather, Y. Nebel-Jacobsen, F. A. Capitanio, H. J. B. Dick, and P. A. Cawood, “An Early Cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean,” Sci. Advances 6 (44), 1–29 (2020).

    Article  Google Scholar 

  43. J. E. Snow and H. N. Edmonds, “Ultraslow-spreading ridges. Rapid paradigm changes,” Oceanography 20 (1), 90–101 (2007).

    Article  Google Scholar 

  44. R. A. Sohn, C. Willis, S. Humphris, et al., “Explosive volcanism on the ultraslow-spreading Gakkel Ridge, Arctic Ocean,” Nature 453, 1236–1238 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  45. P. T. Taylor, L. C. Kovacs, P. R. Vogt, and G. L. Johnson, “Detailed aeromagnetic investigation of the Arctic Basin,” J. Geophys. Res. 86, 6323–6333 (1981).

    Article  ADS  Google Scholar 

  46. J. Thiede, Polarstern Arctis XVII/2 Cruise Report: Amore 2001 (Arctic Mid-Ocean Ridge Expedition) (Bremerhaven, Alfred Wegener Inst., 2002. Vol. 421).

    Google Scholar 

  47. A. Tremblay, A. Meshi, and J. H. Bedard, “Oceanic core complexes and ancient oceanic lithosphere: Insights from Iapetan and Tethyan ophiolites (Canada and Albania),” Tectonophysics 473 (2009).

  48. M. Xu, J. P. Canales, B. E. Tucholke, and D. L. DuBois, “Heterogeneous Seismic Velocity Structure of the Upper Lithosphere at Kane Oceanic Core Complex, Mid-Atlantic Ridge,” Geochem., Geophys., Geosyst. 10 (10), 1–34 (2009). https://doi.org/10.1029/2009GC002586

    Article  Google Scholar 

  49. V. A. Zakharov, B. I. Kim, and M. A. Rogov, “Probable distribution of Upper Jurassic and Lower Cretaceous deposits on the Laptev Sea shelf and their petroleum resource potential,” Stratigr. Geol. Correl. 21 (5), 496–514 (2013). https://doi.org/10.1134/S0869593813050067

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewer, Doctor of Geology and Mineralogy A.A. Peive (Geological Institute of the Russian Academy of Sciences, Moscow, Russia) and the anonymous reviewer for useful comments and are grateful to the editor M.N. Shupletsova (Geological Institute of the Russian Academy of Sciences, Moscow, Russia) for careful editing.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Piskarev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piskarev, A.L., Kaminsky, V.D., Kireev, A.A. et al. The Structure of the Gakkel Ridge: Geological and Geophysical Data. Geotecton. 57 (Suppl 1), S84–S99 (2023). https://doi.org/10.1134/S0016852123070105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852123070105

Keywords:

Navigation