Skip to main content
Log in

High Inhibition Activity of CQDs-Macaranga tanarius Organic Framework Nanomaterial-Based Antibacterials

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antibacterial agent based on modification of Macaranga tanarius (M. tanarius) extract into CQDs@M. tanarius has been successfully synthesized and applied against Escherichia coli and Staphylococcus aureus. Macaranga tanarius plants were obtained from Buton Island, Southeast Sulawesi-Indonesia, and used as precursors for Carbon Quantum Dots (CQDs). In the synthesis, the dried leaves of M. tanarius were macerated, and then the filtrate was modified hydrothermally in a Teflon-lined stainless steel autoclave. The modification results produce nano-sized CQDs@M. tanarius particles. The PSA test confirmed this, which described the CQDs@M. tanarius particle size as 57.0 nm. The results of UV–Vis spectroscopy tests illustrate that the CQDs@M. tanarius molecules experience π → π* and n → π* electronic transitions at a wavelength of 367 nm. Meanwhile, in the FTIR spectroscopy test, stretching vibrations from the functional groups –OH, C–H, C=O, C–O, and the benzene ring were observed at wave numbers 3415.93 cm−1, 2976.16 cm−1, 1641.42 cm−1, 1274.95 cm−1, and 692.44 cm−1, respectively. Based on the antibacterial activity test, it is known that CQDs@M. tanarius has high inhibitory activity against E. coli and S. aureus. The resulting inhibition diameters are 15.82 mm and 11.24 mm, respectively. This high inhibitory diameter further illustrates the potential of CQDs@M. tanarius for its further application as an antibacterial material in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Pandiyan S, Arumugam L, Srirengan SP, Pitchan R, Sevugan P, Kannan K, Pitchan G, Hegde TA, Gandhirajan V (2020) Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS Omega 5:30363–30372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hao X, Huang L, Zhao C, Chen S, Lin W, Lin Y, Zhang L, Miao C, Lin X, Chen M (2021) Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Mater Sci Eng C 123:111971

    Article  CAS  Google Scholar 

  3. W.H. Organization (2020) Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020

  4. Rello J, Parisella FR, Perez A (2019) Alternatives to antibiotics in an era of difficult-to-treat resistance: new insights. Expert Rev Clin Pharmacol 12:635–642

    Article  CAS  PubMed  Google Scholar 

  5. Horky P, Skalickova S, Urbankova L, Baholet D, Kociova S, Bytesnikova Z, Kabourkova E, Lackova Z, Cernei N, Gagic M (2019) Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure. J Anim Sci Biotechnol 10:1–12

    Article  Google Scholar 

  6. Hamad A, Khashan KS, Hadi A (2020) Silver nanoparticles and silver ions as potential antibacterial agents. J Inorg Organomet Polym Mater 30:4811–4828

    Article  CAS  Google Scholar 

  7. Lakshmi SD, Avti PK, Hegde G (2018) Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: a review. Nano-Struct Nano-Objects 16:306–321

    Article  CAS  Google Scholar 

  8. Liu J, Li S, Fang Y, Zhu Z (2019) Boosting antibacterial activity with mesoporous silica nanoparticles supported silver nanoclusters. J Colloid Interface Sci 555:470–479

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zhao Y, Jiang X (2013) Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale 5:8340–8350

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Wang L, Li S, Yin J, Yang J, Li Q, Zheng W, Liu S, Jiang X (2020) The density of surface coating can contribute to different antibacterial activities of gold nanoparticles. Nano Lett 20:5036–5042

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Sathiyaraj S, Suriyakala G, Gandhi AD, Babujanarthanam R, Almaary KS, Chen T-W, Kaviyarasu K (2021) Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. J Infect Public Health 14:1842–1847

    Article  PubMed  Google Scholar 

  12. Žalnėravičius R, Klimas V, Paškevičius A, Grincienė G, Karpicz R, Jagminas A, Ramanavičius A (2021) Highly efficient antimicrobial agents based on sulfur-enriched, hydrophilic molybdenum disulfide nano/microparticles and coatings functionalized with palladium nanoparticles. J Colloid Interface Sci 591:115–128

    Article  ADS  PubMed  Google Scholar 

  13. Bhattacharjee D, Sheet SK, Khatua S, Biswas K, Joshi S, Myrboh B (2018) A reusable magnetic nickel nanoparticle based catalyst for the aqueous synthesis of diverse heterocycles and their evaluation as potential anti-bacterial agent. Bioorg Med Chem 26:5018–5028

    Article  CAS  PubMed  Google Scholar 

  14. Ahghari MR, Soltaninejad V, Maleki A (2020) Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci Rep 10:12627

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Natsir M, Maulidiyah M, Ansharullah A, Arham Z, Wibowo D, Nurdin M (2018) Natural biopesticide preparation as antimicrobial material based on lignin photodegradation using mineral ilmenite (Feo. Tio2). Int Res J Pharm 9:170–174

    Article  CAS  Google Scholar 

  16. Maulidiyah M, Susilowati PE, Mudhafar NK, Salim LA, Wibowo D, Muzakkar MZ, Irwan I, Arham Z, Nurdin M (2022) Photo-inactivation Staphylococcus aureus by using formulation of Mn-N-TiO2 composite coated wall paint. Biointerface Res Appl Chem 12:1628–1637

    CAS  Google Scholar 

  17. Nurdin M, Watoni AH, Arham Z, Yanti NA, Marlini S, Maulidiyah M, Salim LOA, Irwan I (2022) Strong inhibition of silver-doped TiO2 nanoparticles against P. palmivora in visible light. Bionanoscience 12:351–358

    Article  Google Scholar 

  18. Zhang R, Carlsson F, Edman M, Hummelgård M, Jonsson B, Bylund D, Olin H (2018) Escherichia coli bacteria develop adaptive resistance to antibacterial ZnO nanoparticles. Adv Biosyst 2:1800019

    Article  Google Scholar 

  19. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  20. Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB (2021) A mini review of antibacterial properties of ZnO nanoparticles. Front Phys 9:641481

    Article  Google Scholar 

  21. Shen W, Li P, Feng H, Ge Y, Liu Z, Feng L (2017) The bactericidal mechanism of action against Staphylococcus aureus for AgO nanoparticles. Mater Sci Eng C 75:610–619

    Article  CAS  Google Scholar 

  22. Lekshmi GS, Tamilselvi R, Geethalakshmi R, Kirupha SD, Bazaka O, Levchenko I, Bazaka K, Mandhakini M (2022) Multifunctional oil-produced reduced graphene oxide–silver oxide composites with photocatalytic, antioxidant, and antibacterial activities. J Colloid Interface Sci 608:294–305

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Tomina VV, Furtat IM, Lebed AP, Kotsyuda SS, Kolev H, Kanuchova M, Behunova DM, Vaclavikova M, Melnyk IV (2020) Diverse pathway to obtain antibacterial and antifungal agents based on silica particles functionalized by amino and phenyl groups with Cu (II) ion complexes. ACS Omega 5:15290–15300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kunkalekar RK (2019) Role of oxides (Fe3O4, MnO2) in the antibacterial action of Ag–metal oxide hybrid nanoparticles. In: Noble Met. Oxide Hybrid Nanoparticles, Elsevier. pp. 303–312

  25. Jia H, Zhang X, Zeng X, Cai R, Wang Z, Yuan Y, Yue T (2021) Construction of silver nanoparticles anchored flower-like magnetic Fe3O4@ SiO2@ MnO2 hybrids with antibacterial and wound healing activity. Appl Surf Sci 567:150797

    Article  CAS  Google Scholar 

  26. Naz S, Gul A, Zia M, Javed R (2023) Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol 107:1039–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mustafa YF (2023) Modern developments in the application and function of metal/metal oxide nanocomposite-based antibacterial agents. Bionanoscience 13:840–852

    Article  Google Scholar 

  28. Mašojević D, Stamenović U, Otoničar M, Davidović S, Škapin S, Barudžija T, Vodnik V (2023) Evaluation of the antibacterial effectiveness of novel copper/polypyrrole nanocomposite. Mater Lett 338:134051

    Article  Google Scholar 

  29. Paunova-Krasteva T, Hemdan BA, Dimitrova PD, Damyanova T, El-Feky AM, Elbatanony MM, Stoitsova S, El-Liethy MA, El-Taweel GE, El Nahrawy AM (2023) Hybrid chitosan/CaO-based nanocomposites doped with plant extracts from Azadirachta indica and Melia azedarach: evaluation of antibacterial and antibiofilm activities. Bionanoscience 13:88–102

    Article  Google Scholar 

  30. Yang S-R, Wang R, Yan C-J, Lin Y-Y, Yeh Y-J, Yeh Y-Y, Yeh Y-C (2023) Ultrasonic interfacial crosslinking of TiO2-based nanocomposite hydrogels through thiol–norbornene reactions for sonodynamic antibacterial treatment. Biomater Sci 11:4184–4199

    Article  CAS  PubMed  Google Scholar 

  31. Soleimani S, Yousefzadi M, Jannesari A, Ghaderi A, Shahdadi A (2023) Green synthesis of graphene oxide-based nanocomposite by Polycladia myrica: antibacterial, anti-algae, and acute zooplanktonic responses. J Appl Phycol. https://doi.org/10.1007/s10811-023-02951-y

    Article  Google Scholar 

  32. Liu G, Shi K, Sun H (2023) Research progress in hemicellulose-based nanocomposite film as food packaging. Polymers 15:979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Li P, Yan H, Guo Q, Xu Q, Su W (2023) Green synthesis and multifunctional applications of nitrogen-doped carbon quantum dots via one-step hydrothermal carbonization of Curcuma zedoaria. Anal Bioanal Chem 415:1917–1931

    Article  CAS  PubMed  Google Scholar 

  34. Wen F, Li P, Yan H, Su W (2023) Turmeric carbon quantum dots enhanced chitosan nanocomposite films based on photodynamic inactivation technology for antibacterial food packaging. Carbohydr Polym 311:120784

    Article  CAS  PubMed  Google Scholar 

  35. Alamdari NG, Almasi H, Moradi M, Akhgari M (2023) Characterization of carbon quantum dots synthesized from vinasse and date seeds as agro-industrial wastes. Waste and Biomass Valorization. 1–15

  36. Nammahachak N, Aup-Ngoen KK, Asanithi P, Horpratum M, Chuangchote S, Ratanaphan S, Surareungchai W (2022) Hydrothermal synthesis of carbon quantum dots with size tunability via heterogeneous nucleation. RSC Adv 12:31729–31733

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei X, Cheng F, Yao Y, Yi X, Wei B, Li H, Wu Y, He J (2021) Facile synthesis of a carbon dots and silver nanoparticles (CDs/AgNPs) composite for antibacterial application. RSC Adv 11:18417–18422

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu T, Pang Q, Mai K, He X, Xu L, Zhou F, Liu Y (2022) Silver nanoparticle@carbon quantum dot composite as an antibacterial agent. RSC Adv 12:9621–9627

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nasseri MA, Keshtkar H, Kazemnejadi M, Allahresani A (2020) Phytochemical properties and antioxidant activity of Echinops persicus plant extract: green synthesis of carbon quantum dots from the plant extract. SN Appl Sci 2:1–12

    Article  Google Scholar 

  40. Gedda G, Sankaranarayanan SA, Putta CL, Gudimella KK, Rengan AK, Girma WM (2023) Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Sci Rep 13:6371

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Surendran P, Lakshmanan A, Priya SS, Geetha P, Rameshkumar P, Kannan K, Hegde TA, Vinitha G (2021) Fluorescent carbon quantum dots from Ananas comosus waste peels: a promising material for NLO behaviour, antibacterial, and antioxidant activities. Inorg Chem Commun 124:108397

    Article  CAS  Google Scholar 

  42. Velmurugan P, Kumar RV, Sivakumar S, Ravi AV (2022) Fabrication of blue fluorescent carbon quantum dots using green carbon precursor Psidium guajava leaf extract and its application in water treatment. Carbon Lett 32:119–129

    Article  Google Scholar 

  43. Chien Y-H, Yu Y-H, Ye S-R, Chen Y-W (2022) Antibacterial and antioxidant activity of the fruit of Macaranga tanarius, the plant origin of Taiwanese green Propolis. Antioxidants 11:1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee J-H, Kim Y-G, Khadke SK, Yamano A, Woo J-T, Lee J (2019) Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius. Phytomedicine 63:153033

    Article  CAS  PubMed  Google Scholar 

  45. Lim TY, Lim YY, Yule CM (2009) Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chem 114:594–599

    Article  CAS  Google Scholar 

  46. Arham Z, Kurniawan K, Anhusadar L (2023) High electrochemical response of TiO2@C-dots nanocomposites as electrode modifiers for Pb (II) detection. Mater Sci Semicond Process 160:107466

    Article  CAS  Google Scholar 

  47. Roomi AB, Widjaja G, Savitri D, Turki Jalil A, Fakri Mustafa Y, Thangavelu L, Kazhibayeva G, Suksatan W, Chupradit S, Aravindhan S (2021) SnO2: Au/carbon quantum dots nanocomposites: synthesis, characterization, and antibacterial activity. J. Nanostruct 11:514–523

    CAS  Google Scholar 

  48. Safardoust-Hojaghan H, Salavati-Niasari M, Amiri O, Rashki S, Ashrafi M (2021) Green synthesis, characterization and antimicrobial activity of carbon quantum dots-decorated ZnO nanoparticles. Ceram Int 47:5187–5197

    Article  CAS  Google Scholar 

  49. Travlou NA, Giannakoudakis DA, Algarra M, Labella AM, Rodríguez-Castellón E, Bandosz TJ (2018) S-and N-doped carbon quantum dots: surface chemistry dependent antibacterial activity. Carbon NY 135:104–111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Ministry of Education, Culture, Research and Technology of the Republic of Indonesia under the Fundamental Research award grant no 16/E5/PG.02.00.PL/2023 and 950/UN56.D.01/PN.03.00/2023.

Author information

Authors and Affiliations

Authors

Contributions

SS: Writing-original draft, investigation, formal analysis, data curation, conceptualization. DT: Formal analysis, validation, conceptualization. AA: Formal analysis, Validation. ZA: Writing-original draft, validation, data curation, writing-review and editing.

Corresponding authors

Correspondence to Saparuddin Saparuddin or Zul Arham.

Ethics declarations

Conflict of interest

Saparuddin Saparuddin declares that he has no conflict of interest. Djunarlin Tojang declares that she has no conflict of interest. Alimuddin Alimuddin declares that he has no conflict of interest. Zul Arham declares that he has no conflict of interest.

Ethical Approval

This study does not contain experiments that involve humans or animals other than the authors who performed the work.

Consent to Participate

Not applicable.

Consent for Publication

The manuscript in full has not been published anywhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saparuddin, S., Tojang, D., Alimuddin, A. et al. High Inhibition Activity of CQDs-Macaranga tanarius Organic Framework Nanomaterial-Based Antibacterials. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01230-9

Keywords

Navigation