Skip to main content
Log in

MDS codes with l-Galois hulls of arbitrary dimensions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The hull of a linear code is defined to be the intersection of the code and its dual, and was originally introduced to classify finite projective planes. The objective of this paper is to construct some MDS codes with l-Galois hulls of arbitrary dimensions by using the generalized Reed–Solomon codes over finite fields with regard to l-Galois inner product. We give a general construction theorem and some construction ideas of MDS with l-Galois hulls of arbitrary dimensions. Our approach provides a general framework that effectively unifies similar known techniques for constructing MDS codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Our data can be obtained from the authors upon reasonable request.

References

  1. Assmus E.F., Key J.D.: Affine and projective planes. Discret. Math. 83, 161–187 (1990).

    Article  MathSciNet  Google Scholar 

  2. Cao M.: MDS codes with Galois Hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 67(12), 7964–7984 (2021).

    Article  MathSciNet  Google Scholar 

  3. Cheng B., Liu H.: New constructions of MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(8), 5776–5782 (2018).

    Article  MathSciNet  Google Scholar 

  4. Dau S.H., Song W., Yuen C.: On the existence of MDS codes over small fields with constrained generator matrices. In: 2014 IEEE International Symposium on Information Theory, pp. 1787–1791 (2014).

  5. Fan Y., Zhang L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84, 473–492 (2017).

    Article  MathSciNet  Google Scholar 

  6. Fang W., Fu F.: Two new classes of quantum MDS codes. Finite Fileds Appl. 53, 85–98 (2018).

    Article  MathSciNet  Google Scholar 

  7. Fang W., Fu F., Li L., Zhu S.: Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 66(6), 3527–3537 (2020).

    Article  MathSciNet  Google Scholar 

  8. Fang X., Jin R., Luo J., Ma W.: New Galois hulls of GRS codes and application to EAQECCs. Cryptogr. Commun. 14(1), 145–159 (2022).

    Article  MathSciNet  Google Scholar 

  9. Ghinelli D., Key J.D., McDonough T.P.: Hulls of codes from incidence matrices of connected regular graphs. Des. Codes Cryptogr. 70, 35–54 (2014).

    Article  MathSciNet  Google Scholar 

  10. Guenda K., Jitman S., Gulliver T.A.: Constructions of good entanglement assisted quanutm error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018).

    Article  MathSciNet  Google Scholar 

  11. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  12. Jin L., Xing C.: New MDS self-dual codes from generalized Reed–Solomon codes. IEEE Trans. Inf. Theory 63(3), 1434–1438 (2017).

    Article  MathSciNet  Google Scholar 

  13. Jin L., Ling S., Luo J., Xing C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010).

    Article  MathSciNet  Google Scholar 

  14. Kokkala J., Krotov D., \(\ddot{O}\)sterg\(\ddot{a}\)rd P.: On the classification of MDS codes. IEEE Trans. Inf. Theory 61(12), 6485–6492 (2015).

  15. Leon J.S.: An algorithm for computing the automorphism group of a Hadamard matrix. J. Comb. Theory Ser. A 27(3), 289–306 (1979).

    Article  MathSciNet  Google Scholar 

  16. Leon J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28(3), 496–511 (1982).

    Article  MathSciNet  Google Scholar 

  17. Leon J.S.: Permutation group algorithms based on partitions, I: theory and algorithms. J. Symb. Comput. 12, 533–583 (1991).

    Article  MathSciNet  Google Scholar 

  18. Li C., Ding C., Li S.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017).

    Article  MathSciNet  Google Scholar 

  19. Li Y., Zhu S., Li P.: On MDS codes with Galois hulls of arbitrary dimensions. Cryptogr. Commun. 15, 565–587 (2023).

    Article  MathSciNet  Google Scholar 

  20. Li S., Shi M., Wang J.: An improved method for constructing formally self-dual codes with small hulls. Des. Codes Cryptogr. 91(7), 2563–2583 (2023).

    Article  MathSciNet  Google Scholar 

  21. Liu H., Pan X.: Galois Hulls of linear codes over finite fields. Des. Codes Cryptogr. 88(2), 241–255 (2020).

    Article  MathSciNet  Google Scholar 

  22. Liu X., Fan Y., Liu H.: Galois LCD codes over finite fields. Finite Fileds Appl. 49, 227–242 (2018).

    Article  MathSciNet  Google Scholar 

  23. Liu X., Liu H., Yu L.: Entanglement-assisted quantum codes from Galois LCD codes (2018). arXiv:1809.00568v1 [cs.IT].

  24. Luo G., Cao X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes. Quantum Inf. Process. 18, 89 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  25. Luo G., Cao X., Chen X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).

    Article  MathSciNet  Google Scholar 

  26. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

    Google Scholar 

  27. Pedersen J., Dahl C.: Classification of pseudo-cyclic MDS codes. IEEE Trans. Inf. Theory 37(2), 365–370 (1991).

    Article  MathSciNet  Google Scholar 

  28. Petrank E., Roth R.M.: Is code equivalence easy to decide? IEEE Trans. Inf. Theory 43(5), 1602–1604 (1997).

    Article  MathSciNet  Google Scholar 

  29. Roth R.M., Lempel A.: A construction of non-Reed–Solomon type MDS codes. IEEE Trans. Inf. Theory 35(3), 655–657 (1989).

    Article  MathSciNet  Google Scholar 

  30. Sangwisut E., Jitman S., Ling S., Udomkavanich P.: Hulls of cyclic and negacyclic codes over finite fields. Finite Fields Appl. 33, 232–257 (2015).

    Article  MathSciNet  Google Scholar 

  31. Sendrier N.: On the dimension of the hull. SIAM J. Discret. Math. 10(2), 282–293 (1997).

    Article  MathSciNet  Google Scholar 

  32. Sendrier N.: Finding the permutation between equivalent linear codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000).

    Article  MathSciNet  Google Scholar 

  33. Sendrier N., Skersys G.: On the computation of the automorphism group of a linear code. In: Proceedings of IEEE International Symposium on Information Theory, Washington, DC, p. 13 (2001).

  34. Shi X., Yue Q., Chang Y.: Some quantum MDS codes with large minimum distance from generalized Reed–Solomon codes. Cryptogr. Commun. 10(6), 1165–1182 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  35. Skersys G.: The average dimension of the hull of cyclic codes. Discret. Appl. Math. 128(1), 275–292 (2003).

    Article  MathSciNet  Google Scholar 

  36. Sok L., Shi M., Solé P.: Construction of optimal LCD codes over large finite fields. Finite Fields Appl. 50, 138–153 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China under Grants 12301663, 12171241 and 12226408, in part by the Natural Science Foundation of Anhui Province under Grant 2308085QA10 and in part by the China Postdoctoral Science Foundation under Grant 2023M740016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin Qian.

Ethics declarations

Conflict of interest

The authors have no conficts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by G. Lunardon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Cao, X., Wu, X. et al. MDS codes with l-Galois hulls of arbitrary dimensions. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-024-01371-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-024-01371-4

Keywords

Mathematics Subject Classification

Navigation