Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter March 12, 2024

Synthesis of hydrophobic biopolyesters from depolymerized Pinus radiata bark suberin

  • Helena C. Quilter , Regis Risani , Suzanne Gallagher , Michael Robertson , Armin Thumm , Hayden P. Thomas and Robert Abbel ORCID logo EMAIL logo
From the journal Holzforschung

Abstract

The bark of Pinus radiata offers an underutilized source of high-value renewable chemicals such as extractable polyphenols and lipophilic compounds (waxes and suberin). Here, the depolymerization and extraction of suberin from P. radiata bark and its repolymerization to form novel polyesters are reported. Three different strategies were evaluated for repolymerization of the suberin monomers, with starting materials and products characterized using chemical and thermal analysis techniques. The inclusion of comonomer (1,12-dodecanediol) to provide stoichiometric balance improved the conversion, product yield, solubility and increased molecular weight. Enzymatic polymerization conditions gave the highest yield, while the highest molecular weight was achieved using titanium butoxide, demonstrating that polymerization conditions could be varied to target desired product properties. Products were hydrophobic, as shown by contact angles, ϴ ≥ 90° after 30 s. This work highlights opportunities for utilizing suberin to add value to a P. radiata bark biorefinery concept. Potential future applications include its use as a starting material for novel bio-based polymers that can serve as water-repellent surfaces and coatings, replacing established products derived from fossil resources.


Corresponding author: Robert Abbel, Chemistry and Physics Research Group, Scion, Tītokorangi Drive, Rotorua 3010, New Zealand, E-mail:

Award Identifier / Grant number: C04X1703

Award Identifier / Grant number: C04X1802

Acknowledgements

The authors acknowledge Daniel van de Pas (Scion) for discussions about 31P NMR spectroscopy, Maxime Barbier (Scion) for technical support with dielectric spectroscopy, and Dr. Andrew Lewis (Callaghan Innovation) for technical support with NMR spectroscopy.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was funded by the New Zealand Ministry of Business, Innovation, and Employment, grant numbers C04X1802: Bark Biorefinery: Unlocking new hydrophobic Polymers, and C04X1703: Strategic Science Investment Fund (Bark Based Bioproducts).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Ali, A., Jamil, M.I., Jiang, J., Shoaib, M., Amin, B.U., Luo, S., Zhan, X., Chen, F., and Zhang, Q. (2020). An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications. J. Polym. Res. 27: 1–17.10.1007/s10965-020-02054-zSearch in Google Scholar

Antony, F., Schimleck, L.R., Daniels, R.F., Clark, A.III, Borders, B.E., Kane, M.B., and Burkhart, H.E. (2015). Whole-tree bark and wood properties of loblolly pine form intensively managed plantations. For. Sci. 61: 55–66.10.5849/forsci.12-030Search in Google Scholar

Aspé, E. and Fernández, K. (2011). The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata bark. Ind. Crops Prod. 34: 838–844.10.1016/j.indcrop.2011.02.002Search in Google Scholar

Bento, A., Moreira, C.J., Correia, V.G., Escórcio, R., Rodrigues, R., Tomé, A.S., Geneix, N., Petit, J., Bakan, B., and Rothan, C. (2021). Quantification of structure-property relationships for plant polyesters reveals suberin and cutin idiosyncrasies. ACS Sustain. Chem. Eng. 9: 15780–15792.10.1021/acssuschemeng.1c04733Search in Google Scholar PubMed PubMed Central

Bento, A., Escórcio, R., Tomé, A.S., Robertson, M., Gaugler, E.C., Malthus, S.J., Raymond, L.G., Hill, S.J., and Silva Pereira, C. (2022). Pinus radiata bark sequentially processed using scCO2 and an ionic liquid catalyst yields plentiful resin acids and alkanoic acids enriched suberin. Ind. Crops Prod. 185: 115172.10.1016/j.indcrop.2022.115172Search in Google Scholar

Bikiaris, D., Prinos, J., Botev, M., Betchev, C., and Panayiotou, C. (2004). Blends of polymers with similar glass transition temperatures: a DMTA and DSC study. J. Appl. Polym. Sci. 93: 726–735.10.1002/app.20531Search in Google Scholar

Burčová, Z., Kreps, F., Greifová, M., Jablonský, M., Ház, A., Schmidt, Š., and Šurina, I. (2018). Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. J. Biotechnol. 282: 18–24.10.1016/j.jbiotec.2018.06.340Search in Google Scholar PubMed

Cabrera, Z., Fernandez-Lorente, G., Fernandez-Lafuente, R., Palomi, J.M., and Guisan, J.M. (2009). Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem. 44: 226–231.10.1016/j.procbio.2008.10.005Search in Google Scholar

Chen, H., Chauhan, P., and Yan, N. (2020). “Barking” up the right tree: biorefinery from waste stream to cyclic carbonate with immobilization of CO2 for non-isocyanate polyurethanes. Green Chem. 22: 6874–6888.10.1039/D0GC02285CSearch in Google Scholar

Cho, S.-H., Yoon, B., Lee, S.K., Nam, J.-D., and Suhr, J. (2022). Natural cork suberin-originated ecofriendly biopolyester syntactic foam. ACS Sustain. Chem. Eng. 10: 7508–7514.10.1021/acssuschemeng.2c00278Search in Google Scholar

Choi, K.Y. and McAuley, K.B. (2007). Step-growth polymerization. In: Asua, J.M. (Ed.). Polymer reaction engineering. Blackwell Publishing Ltd., Oxford, UK, pp. 273–314.10.1002/9780470692134.ch7Search in Google Scholar

Cordeiro, N., Aurenty, P., Belgacem, M.N., Gandini, A., and Neto, C.P. (1997). Surface properties of suberin. J. Colloid Interface Sci. 187: 498–508.10.1006/jcis.1996.4735Search in Google Scholar PubMed

Ferreira, R., Garcia, H., Sousa, A.F., Freire, C.S.R., Silvestre, A.J.D., Rebelo, L.P.N., and Silva Pereira, C. (2013). Isolation of suberin from birch outer bark and cork using ionic liquids: a new source of macromonomers. Ind. Crops Prod. 44: 520–527.10.1016/j.indcrop.2012.10.002Search in Google Scholar

Gandini, A., Neto, C.P., and Silvestre, A.J.D. (2006). Suberin: a promising renewable resource for novel macromolecular materials. Prog. Polym. Sci. 31: 878–892.10.1016/j.progpolymsci.2006.07.004Search in Google Scholar

Garcia, H., Ferreira, R., Martins, C., Sousa, A.F., Freire, C.S.R., Silvestre, A.J.D., Kunz, W., Rebelo, L.P.N., and Silva Pereira, C. (2014). Ex situ reconstitution of the plant biopolyester suberin as a film. Biomacromolecules 15: 1806–1813.10.1021/bm500201sSearch in Google Scholar PubMed

Glenn, G., Shogren, R., Jin, X., Orts, W., Hart-Cooper, W., and Olson, L. (2021). Per- and polyfluoroalkyl substances and their alternatives in paper food packaging. Compr. Rev. Food Sci. Food Saf. 20: 2596–2625.10.1111/1541-4337.12726Search in Google Scholar PubMed

Graça, J. (2015). Suberin: the biopolyester at the frontier of plants. Front. Chem. 3: 62.10.3389/fchem.2015.00062Search in Google Scholar PubMed PubMed Central

Granata, A. and Argyropoulos, D.S. (1995). 2-Chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J. Agric. Food Chem. 43: 1538–1544.10.1021/jf00054a023Search in Google Scholar

Harman-Ware, A.E., Sparks, S., Addison, B., and Kalluri, U.C. (2021). Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. Biotechnol. Biofuels 14: 75.10.1186/s13068-021-01892-3Search in Google Scholar PubMed PubMed Central

Heinamaki, J., Pirttimaa, M.M., Alakurtti, S., Pitkanen, H.P., Kanerva, H., Hulkko, J., Paaver, U., Aruvali, J., Yliruusi, J., and Kogermann, K. (2017). Suberin fatty acids from outer birch bark: isolation and physical material characterization. J. Nat. Prod. 80: 916–924.10.1021/acs.jnatprod.6b00771Search in Google Scholar PubMed

Jarvinen, R., Silvestre, A.J., Holopainen, U., Kaimainen, M., Nyyssola, A., Gil, A.M., Pascoal Neto, C., Lehtinen, P., Buchert, J., and Kallio, H. (2009). Suberin of potato (Solanum tuberosum var. Nikola): comparison of the effect of cutinase CcCut1 with chemical depolymerization. J. Agric. Food Chem. 57: 9016–9027.10.1021/jf9008907Search in Google Scholar PubMed

Kininmonth, J.A. and Whitehouse, L.J. (1991). Properties and uses of New Zealand radiata pine, Vol. 35. Forest Research Institute, Rotorua, New Zealand, Volume One – Wood Properties, Chapter 4.8 Bark chemistry – general.Search in Google Scholar

Lee, M., Jeong, S.H., and Mun, S.P. (2020). Conditions for the extraction of polyphenols from radiata pine (Pinus radiata) bark for bio-foam preparation. J. Kor. Wood Sci. Technol. 48: 861–868.10.5658/WOOD.2020.48.6.861Search in Google Scholar

Li, D., Iversen, T., and Ek, M. (2015). Hydrophobic materials based on cotton linter cellulose and an epoxy-activated polyester derived from a suberin monomer. Holzforschung 69: 721–730.10.1515/hf-2014-0261Search in Google Scholar

Liu, M., Mao, X., Zhu, H., Lin, A., and Wang, D. (2013). Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: effects of resin molecular weight, polar group and hydrophobic segment. Corros. Sci. 75: 106–113.10.1016/j.corsci.2013.05.020Search in Google Scholar

Menager, C., Guigo, N., Vincent, L., and Sbirrazzuoli, N. (2021). Suberin from cork as a tough cross-linker in bioepoxy resins. ACS Appl. Polym. Mater. 3: 6090–6101.10.1021/acsapm.1c00927Search in Google Scholar

Murphy, G. and Cown, D. (2015). Within-tree, between-tree, and geospatial variation in estimated Pinus radiata bark volume and weight in New Zealand. N. Z. J. For. Sci. 45: 18.10.1186/s40490-015-0048-5Search in Google Scholar

Nixon, C., Gamperle, D., Pambudi, D., and Clough, P. (2017). Plantation forestry statistics: contribution of forestry to New Zealand. Technical Report, New Zealand Institute of Economic Research, Wellington.Search in Google Scholar

O’Donnell, K.P. and Hunter Woodward, W.H. (2015). Dielectric spectroscopy for the determination of the glass transition temperature of pharmaceutical solid dispersions. Drug Dev. Ind. Pharm. 41: 959–968.10.3109/03639045.2014.919314Search in Google Scholar PubMed

Olsson, A., Lindstrom, M., and Iversen, T. (2007). Lipase-catalyzed synthesis of an epoxy-functionalized polyester from the suberin monomer cis-9,10-epoxy-18-hydroxyoctadecanoic acid. Biomacromolecules 8: 757–760.10.1021/bm060965wSearch in Google Scholar PubMed

Ortmann, P. and Mecking, S. (2013). Long-spaced aliphatic polyesters. Macromolecules 46: 7231–7218.10.1021/ma401305uSearch in Google Scholar

Pinto, P.C., Sousa, A.F., Silvestre, A.J., Neto, C.P., Gandini, A., Eckerman, C., and Holmbom, B. (2009). Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: a comparative study. Ind. Crops Prod. 29: 126–132.10.1016/j.indcrop.2008.04.015Search in Google Scholar

Puretskiy, N., Chanda, J., Stoychev, G., Synytska, A., and Ionov, L. (2015). Anti-icing superhydrophobic surfaces based on core-shell fossil particles. Adv. Mater. Interfaces 2: 1500124.10.1002/admi.201500124Search in Google Scholar

Rogers, D.L. (2004). In situ genetic conservation of a naturally restricted and commercially widespread species, Pinus radiata. For. Ecol. Manag. 197: 311–322.10.1016/j.foreco.2004.05.022Search in Google Scholar

Rosenboom, J.G., Langer, R., and Traverso, G. (2022). Bioplastics for a circular economy. Nat. Rev. Mater. 7: 117–137.10.1038/s41578-021-00407-8Search in Google Scholar PubMed PubMed Central

Rüdiger, A., Hendil-Forssell, P., Hedfors, C., Martinelle, M., Trey, S., and Johansson, M. (2013). Chemoenzymatic route to renewable thermosets based on a suberin monomer. J. Renew. Mater. 1: 124–140.10.7569/JRM.2012.634109Search in Google Scholar

Sagnelli, D., Vestri, A., Curia, S., Taresco, V., Santagata, G., Johansson, M.K., and Howdle, S.M. (2021). Green enzymatic synthesis and processing of poly (cis-9, 10-epoxy-18-hydroxyoctadecanoic acid) in supercritical carbon dioxide (scCO2). Eur. Polym. J. 161: 110827.10.1016/j.eurpolymj.2021.110827Search in Google Scholar

Semlitsch, S., Torron, S., Johansson, M., and Martinelle, M. (2016). Enzymatic catalysis as a versatile tool for the synthesis of multifunctional, bio-based oligoester resins. Green Chem. 18: 1923–1929.10.1039/C5GC02597DSearch in Google Scholar

Shen, S., Caydamli, Y., Gurarslan, A., Li, S., and Tonelli, A.E. (2017). The glass transition temperatures of amorphous linear polyesters. Polymer 124: 235–245.10.1016/j.polymer.2017.07.054Search in Google Scholar

Shula, R. G. (1989). The upper limits of radiata pine stem-volume production in NZ. N. Z. J. For. 34: 19–22.Search in Google Scholar

Sillero, L., Prado, R., Andrés, M.A., and Labidi, J. (2019). Characterisation of bark of six species from mixed Atlantic forest. Ind. Crops Prod. 137: 276–284.10.1016/j.indcrop.2019.05.033Search in Google Scholar

Sousa, A.F., Gandini, A., Silvestre, A.J., Neto, C.P., Cruz Pinto, J.J., Eckerman, C., and Holmbom, B. (2011). Novel suberin-based biopolyesters: from synthesis to properties. J. Polym. Sci. Polym. Chem. 49: 2281–2291.10.1002/pola.24661Search in Google Scholar

Torron, S., Semlitsch, S., Martinelle, M., and Johansson, M. (2014). Polymer thermosets from multifunctional polyester resins based on renewable monomers. Macromol. Chem. Phys. 215: 2198–2206.10.1002/macp.201400192Search in Google Scholar

Torron, S. and Johansson, M. (2015). Oxetane-terminated telechelic epoxy-functional polyesters as cationically polymerizable thermoset resins: tuning the reactivity with structural design. J. Polym. Sci. Polym. Chem. 53: 2258–2266.10.1002/pola.27673Search in Google Scholar

Tyagi, P., Salem, K.S., Hubbe, M.A., and Pal, L. (2021). Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – a review. Trends Food Sci. Technol. 115: 461–485.10.1016/j.tifs.2021.06.036Search in Google Scholar

Vaganov, G., Vaganov, V., Radchenko, I., and Ilyina, I. (2020). Highly hydrophobic anti-icing coatings. In: IOP conference series: earth and environmental science, Vol. 539. IOP Publishing, Saint Petersburg, p. 012038.10.1088/1755-1315/539/1/012038Search in Google Scholar

Wang, Z., Ganewatta, M.S., and Tang, C. (2020). Sustainable polymers from biomass: bridging chemistry with materials and processing. Prog. Polym. Sci. 101: 101197.10.1016/j.progpolymsci.2019.101197Search in Google Scholar

Werner, N. and Zibek, S. (2017). Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts. World J. Microbiol. Biotechnol. 33: 1–9.10.1007/s11274-017-2360-0Search in Google Scholar PubMed

Yuan, H., Pan, Y., Wang, X., Chen, Q., Hu, Q., Shao, C., Guo, Z., Liu, C., Shen, C., and Liu, X. (2020). Simple water tunable polyurethane microsphere for super-hydrophobic dip-coating and oil-water separation. Polymer 204: 122833.10.1016/j.polymer.2020.122833Search in Google Scholar

Zahid, M., Heredia-Guerrero, J.A., Athanassiou, A., and Bayer, I.S. (2017). Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chem. Eng. J. 319: 321–332.10.1016/j.cej.2017.03.006Search in Google Scholar

Zhu, Y., Romain, C., and Williams, C.K. (2016). Sustainable polymers from renewable resources. Nature 540: 354–362.10.1038/nature21001Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/hf-2023-0104).


Received: 2023-10-07
Accepted: 2024-02-22
Published Online: 2024-03-12

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2023-0104/html
Scroll to top button