Synthesis 2024; 56(10): 1505-1540
DOI: 10.1055/a-2262-9575
review
C–H Bond Functionalization of Heterocycles

Transition-Metal-Catalyzed C–H Activation Reactions for the Creation and Modification of Organic Fluorophores

Tapasi Chand
,
We thank SERB-India for the funding (EMR/2016/004298). T.C. thanks IISER Bhopal for a research fellowship. We also thank the Director, Indian­ Institute of Science Education and Research Bhopal (IISER Bhopal­), for funding and infrastructural facilities.


Abstract

Organic fluorophores have consistently garnered significant interest owing to their widespread application across various multidisciplinary research fields. In the realm of biological research, these organic fluorophores find extensive use in diverse applications such as molecular imaging, DNA sequencing, drug discovery, and biosensors. Remarkably, in recent times, organic fluorescent molecules have emerged as pivotal elements in the advancement of organic electronics. Across several reaction pathways developed for constructing and modifying organic fluorophores, transition-metal-catalyzed C–H activation reactions have come across as a dependable and step-economical approach. In this review we discuss various transition-metal-catalyzed C–H activation-based approaches that have been employed to create and modify organic fluorescent molecules which find applications in multidisciplinary research areas.

1 Introduction

2 Basic Reactions for the Creation of Organic Fluorophores

3 Merits and Drawbacks of Classical Reactions in the Creation and Modification of Organic Fluorophores

4 C–H Activation/Functionalization Reactions

5 C–H Activation Pathways in the Creation and Modification of Organic­ Fluorophores

5.1 Electrophilic C–H Activation Reactions

5.2 Heteroatom-Directed C–H Activation Reactions

6 Conclusion



Publication History

Received: 29 December 2023

Accepted after revision: 06 February 2024

Accepted Manuscript online:
06 February 2024

Article published online:
11 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bose A, Thomas I, Kavitha G, Abraham E. Int. J. Adv. Pharm. Anal. 2018; 8: 1
  • 2 Kang R, Talamini L, D’Este E, Estevão BM, De Cola L, Klopper W, Biedermann F. Chem. Sci. 2021; 12: 1392
  • 3 Dorlars A, Schellhammer C.-W, Schroeder J. Angew. Chem., Int. Ed. Engl. 1975; 14: 665
  • 4 Wonneberger H, Reichelt H, Zagranyarski Y, Li C, Müllen K, Chen L. US 9630973B2, 2017
  • 5 Li C, Wonneberger H. Adv. Mater. 2012; 24: 613
  • 6 Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem. Rev. 2016; 116: 962
  • 7 Platonova E, Winterflood CM, Junemann A, Albrecht D, Faix J, Ewers H. Methods 2015; 88: 89
  • 8 Wang L, Frei MS, Salim A, Johnsson K. J. Am. Chem. Soc. 2019; 141: 2770
  • 9 Yang Y, Gao F, Wang Y, Li H, Zhang J, Sun Z, Jiang Y. Molecules 2022; 27: 8421
  • 10 Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K. Science 1987; 238: 336
  • 11 Li Z, Bai X, Ruparel H, Kim S, Turro NJ, Ju J. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 414
  • 12 Turcatti G, Romieu A, Fedurco M, Tairi A. Nucleic Acids Res. 2008; 36: e25
  • 13 Chakraborty C, Hsu CH, Wen ZH, Lin CS. Curr. Pharm. Des. 2009; 15: 3552
  • 14 Iliopoulos-Tsoutsouvas C, Kulkarni RN, Makriyannis A, Nikas SP. Expert Opin. Drug Discovery 2018; 13: 933
  • 15 Ma F, Li Y, Tang B, Zhang CY. Acc. Chem. Res. 2016; 49: 1722
  • 16 Alhassawi FM, Corradini MG, Rogers MA, Ludescher RD. Crit. Rev. Food Sci. Nutr. 2018; 58: 1902
  • 17 Park Y.-S, Kim K.-H, Kim J.-J. Appl. Phys. Lett. 2013; 102: 153306
  • 18 Jeong H, Shin H, Lee J, Kim B, Park Y.-I, Yook KS, An B.-K, Park J. J. Photonics Energy 2015; 5: 057608
    • 19a Hesse HC, Weickert J, Hundschell C, Feng X, Müllen K, Nickel B, Mozer AJ, Schmidt-Mende L. Adv. Energy Mater. 2011; 1: 861
    • 19b Bessette A, Hanan GS. Chem. Soc. Rev. 2014; 43: 3342
  • 20 Gialelis TL, Owyong TC, Ding S, Li W, Yu M, O’Brien-Simpson NM, Zhao Z, White JM, Yao B, Hong Y. Cell Rep. Phys. Sci. 2022; 3: 100766
  • 21 Li G, Zhao M, Xie J, Yao Y, Mou L, Zhang X, Guo X, Sun W, Wang Z, Xu J, Xue J, Hu T, Zhang M, Li M, Hong L. Chem. Sci. 2020; 11: 3586
  • 22 Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
  • 23 Ulrich G, Ziessel R, Harriman A. Angew. Chem. Int. Ed. 2008; 47: 1184
  • 24 Mirri G, Schoenmakers DC, Kouwer PH. J, Veranic P, Musevic I, Stefane B. ChemistryOpen 2016; 5: 450
  • 25 Zhang X, Chen Y. Dyes Pigm. 2013; 99: 531
  • 26 Raj KA, Rao MR. J. Org. Chem. 2023; 88: 14960
  • 27 Balakrishnan K, Datar A, Naddo T, Huang J, Oitker R, Yen M, Zhao J, Zang L. J. Am. Chem. Soc. 2006; 128: 7390
  • 28 Qin R, Guo D, Gopalakrishna T, Li G, Yang J, Jiang Y, Ma H. Dyes Pigm. 2019; 160: 540
  • 29 Langhals H, Christian S, Hofer A. J. Org. Chem. 2013; 78: 9883
  • 30 Schiedel M.-S, Briehn CA, Bäuerle P. Angew. Chem. Int. Ed. 2001; 40: 4677
  • 31 Schiedel M.-S, Briehn CA, Bäuerle P. J. Organomet. Chem. 2002; 653: 200
  • 32 Alhaj Zen A, Aylott JW, Chan WC. Tetrahedron Lett. 2014; 55: 5521
  • 33 Li B, Ali AI. M, Ge H. Chem 2020; 6: 2591
  • 34 Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. ACS Catal. 2022; 12: 2796
  • 35 de Moliner F, Kielland N, Lavilla R, Vendrell M. Angew. Chem. Int. Ed. 2017; 56: 3758
  • 36 Houk KN, Liu F, Yang Z, Seeman JI. Angew. Chem. Int. Ed. 2021; 60: 12660
  • 37 Benedetti E, Kocsis LS, Brummond KM. J. Am. Chem. Soc. 2012; 134: 12418
  • 38 Brummond KM, Kocsis LS. Acc. Chem. Res. 2015; 48: 2320
  • 39 Chen X, Zhong C, Lu Y, Yao M, Guan Z, Chen C, Zhu H, Luo Z, Zhang Y. Chem. Commun. 2021; 57: 5155
    • 40a Vázquez ME, Blanco JB, Imperiali B. J. Am. Chem. Soc. 2005; 127: 1300
    • 40b Venkatraman P, Nguyen TT, Sainlos M, Bilsel O, Stern LJ. Nat. Chem. Biol. 2007; 3: 222
    • 40c Nandhikonda P, Heagy MD. Org. Lett. 2010; 12: 4796
  • 41 Ishii A, Makishima Y, Nakata N. J. Org. Chem. 2015; 80: 11598
  • 42 Gawel P, Dengiz C, Finke AD, Trapp N, Boudon C, Gisselbrecht P, Diederich F. Angew. Chem. Int. Ed. 2014; 53: 4341
  • 43 Wender PA, Jeffreys MS, Raub AG. J. Am. Chem. Soc. 2015; 137: 9088
  • 44 Murayama K, Sawada Y, Noguchi K, Tanaka K. J. Org. Chem. 2013; 78: 6202
  • 45 Otani T, Saito T, Sakamoto R, Osada H, Hirahara A, Furukawa N, Kutsumura N, Matsuo T, Tamao K. Chem. Commun. 2013; 49: 6206
  • 46 Ye F, Tran C, Jullien L, Le Saux T, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Lett. 2018; 20: 4950
  • 47 Negishi E. Angew. Chem. Int. Ed. 2011; 50: 6738
  • 48 Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
  • 49 Applied Cross-Coupling Reactions. In Lecture Notes in Chemistry, Vol. 80. Nishihara Y. Springer; New York: 2013
  • 50 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Braese S, Oestreich M. Wiley-VCH; Weinheim: 2014
  • 51 Nascimento S, Fedorov A, Brites MJ, Berberan-Santos MN. Dyes Pigm. 2015; 114: 158
  • 52 Paun A, Hadade ND, Paraschivescu CC, Matache M. J. Mater. Chem. C 2016; 4: 8596
  • 53 Zani L, Dessì A, Franchi D, Calamante M, Reginato G, Mordini A. Coord. Chem. Rev. 2019; 392: 177
  • 54 Yu Q, Wang Y.-L, Chen Z.-Q, Zhao P.-J, Fan C, Li C, Zhu M.-Q. Chin. J. Polym. Sci. 2019; 37: 327
  • 55 Kanchana US, Diana EJ, Mathew TV, Anilkumar G. Appl. Organomet. Chem. 2020; 34: e5983
  • 56 Zhang M, Zhao W. Aggregate 2021; 2: e60
  • 57 Hui J, Ma Y, Zhao J, Cao H. Org. Biomol. Chem. 2021; 19: 10245
  • 58 Souri Z, Khoram MM, Nematollahi D, Mazloum Ardakani M, Alizadeh H. Sci. Rep. 2022; 12: 4921
  • 59 Wang Q, Chen Y.-X, Ji S.-H, Zhou J.-M, Li R.-H, Cai Y.-R. Chem. Eur. J. 2023; 29: e202302124
  • 60 Bozzi AO. Í, Machado AL, Diogo BT. E, Delolo GF, Barros OF. L, Graça AP. G, Araujo HM, Martins TF, Pedrosa FL, da Luz CL, Moraes SE, Rodembusch SF, Guimarães SF. J, Oliveira GA, Röttger HS, Werz BD, Souza PC, Fantuzzi F, Han J, Marder BT, Braunschweig H, da Silv Júnior EN. Chem. Eur. J. 2023; in press DOI: 10.1002/chem.202303883.
  • 61 Goodall W, Wild K, Arm KJ, Williams JA. G. J. Chem. Soc., Perkin Trans. 2 2002; 1669
  • 62 Kuwabara J, Yamagata T, Kanbara T. Tetrahedron 2010; 66: 3736
  • 63 Pǎunescu E, Louise L, Jean L, Romieu A, Renard P. Dyes Pigm. 2011; 91: 427
  • 64 Zhao D, Hu J, Wu N, Huang X, Qin X, Lan J, You J. Org. Lett. 2011; 13: 6516
  • 65 Liu M, Su S.-J, Jung M.-C, Qi Y, Zhao W.-M, Kido J. Chem. Mater. 2012; 24: 3817
  • 66 Tanaka S, Ashida K, Tatsuta G, Mori A. Synlett 2015; 26: 1496
  • 67 Cheng Y, Li G, Liu Y, Shi Y, Gao G, Wu D, Lan J, You J. J. Am. Chem. Soc. 2016; 138: 4730
  • 68 Glöcklhofer F, Lunzer M, Stöger B, Fröhlich J. Chem. Eur. J. 2016; 22: 5173
  • 69 Shen G, Zhao L, Wang Y, Xia W, Yang M, Zhang T. RSC Adv. 2016; 6: 84748
  • 70 Greiner R, Ziegler DS, Cibu D, Jakowetz AC, Auras F, Bein T, Knochel P. Org. Lett. 2017; 19: 6384
  • 71 Kong H, Li Q, Yin Y, Huang M, Kim JK, Zhu Y, Li Y, Wu Y. Org. Biomol. Chem. 2019; 17: 4621
  • 72 Wu X, Jia M, Huang M, Kim JK, Zhao Z, Liu J, Xi J, Li Y, Wu Y. Org. Biomol. Chem. 2020; 18: 3346
  • 73 Seo T, Toyoshima N, Kubota K, Ito H. J. Am. Chem. Soc. 2021; 143: 6165
  • 74 Lyapchev R, Koleva AI, Koleva IZ. Molecules 2022; 27: 7649
  • 75 Liu F, Chen T, Zhang K, Jiang T, Liu J, Duttwyler S. Dalton Trans. 2022; 51: 10880
  • 76 Chen X, Engle KM, Wang H, Yu Q. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 77 Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
  • 78 Sandmeyer T. Chem. Ber. 1884; 17: 1633
  • 79 Khaligh NG. Heteroat. Chem. 2018; 29: e21418
  • 80 Dong CP, Nakamura K, Taniguchi T, Mita S, Kodama S, Kawaguchi SI, Nomoto A, Ogawa A, Mizuno T. ACS Omega 2018; 3: 9814
  • 81 Crabtree RH. Chem. Rev. 1985; 85: 245
  • 82 Dyker G. Angew. Chem. Int. Ed. 1999; 38: 1698
  • 83 Crabtree RH. J. Chem. Soc., Dalton Trans. 2001; 2437
  • 84 Kua J, Xu X, Periana RA, Goddard WA. Organometallics 2002; 21: 511
  • 85 Xu X, Kua J, Periana RA, Goddard WA. Organometallics 2003; 22: 2057
  • 86 Roudesly F, Oble J, Poli G. J. Mol. Catal. A: Chem. 2017; 426: 275
  • 87 Leitch JA, Bhonoah Y, Frost CG. ACS Catal. 2017; 7: 5618
  • 88 Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
  • 89 Murakami K, Yamada S, Kaneda T, Itami K. Chem. Rev. 2017; 117: 9302
  • 90 Gandeepan P, Muller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 91 Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
  • 92 Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749
  • 93 Beck EM, Gaunt MJ. Top. Curr. Chem. 2010; 292: 85
  • 94 Gallego D, Baquero EA. Open Chem. 2018; 16: 1001
  • 95 Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
  • 96 Carvalho RL, Dias GG, Pereira CL. M, Ghosh P, Maiti D, da Silva Júnior EN. J. Braz. Chem. Soc. 2021; 32: 917
  • 97 Pawar GG, Tiwari VK, Jena HK, Kapur M. Chem. Eur. J. 2015; 21: 9905
  • 98 Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Chem. Rev. 2023; 123: 7692
  • 99 Wencel-Delord J, Droge T, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
  • 100 Ackermann L. Chem. Rev. 2011; 111: 1315
  • 101 Engle KM, Mei TS, Wasa M, Yu JQ. Acc. Chem. Res. 2012; 45: 788
  • 102 Sarkar SD, Liu W, Kozhushkov SI, Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
  • 103 Davies HM. L, Morton D. J. Org. Chem. 2016; 81: 343
  • 104 Das R, Kumar GS, Kapur M. Eur. J. Org. Chem. 2017; 2017: 5439
  • 105 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia M, Wencel-Delord J, Besset T, Maes B, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
  • 106 Kalepu J, Pilarski L. Molecules 2019; 24: 830
  • 107 Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, da Silva Júnior EN, Maiti D. Chem. Eur. J. 2021; 27: 12453
  • 108 Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 109 Thrimurtulu N, Dey A, Maiti D, Volla CM. Strategies for Palladium-Catalyzed Non-Directed and Directed CH Bond Functionalization . Kapdi AR, Maiti D. Elsevier; Amsterdam: 2016: 453-470
  • 110 Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
  • 111 Basu D, Kumar S, Sudhir VS, Bandichhor R. J. Chem. Sci. 2018; 130: 71
  • 112 Sinha SK, Zanoni G, Maiti D. Asian J. Org. Chem. 2018; 7: 1178
  • 113 Jana R, Begam HM, Dinda E. Chem. Commun. 2021; 57: 10842
  • 114 Zhang Y, Szostak M. Chem. Eur. J. 2022; 28: e202104278
  • 115 Dutta S, Chatterjee S, Al-Thabaiti SA, Bawaked S, Mokhtar M, Maiti D. Chem. Catal. 2022; 2: 1046
  • 116 Hiesinger K. Angew. Chem. Int. Ed. 2023; 62: e202306659
  • 117 Mori A, Sekiguchi A, Masui K, Shimada T, Horie M, Osakada K, Kawamoto M, Ikeda T. J. Am. Chem. Soc. 2003; 125: 1700
  • 118 Liu B, Wang Z, Wu N, Li M, You J, Lan J. Chem. Eur. J. 2012; 18: 1599
  • 119 Choi EJ, Kim E, Lee Y, Jo A, Park SB. Angew. Chem. Int. Ed. 2014; 53: 1346
  • 120 Fuse S, Morita T, Johmoto K, Uekusa H, Tanaka H. Chem. Eur. J. 2015; 21: 14370
  • 121 Rathnamalala CS. L, Gayton JN, Dorris AL, Autry SA, Meador W, Hammer NI, Delcamp JH, Scott CN. J. Org. Chem. 2019; 84: 13186
  • 122 Fuchi Y, Sakuma M, Ohyama K, Hagihara R, Kohno M, Hamada K, Mizutani A, Karasawa S. Sci. Rep. 2014; 9: 1
  • 123 McNamara LE, Liyanage N, Peddapuram A, Murphy JS, Delcamp JH, Hammer NI. J. Org. Chem. 2016; 81: 32
  • 124 Liang W, Yang Y, Yang M, Zhang M, Li C, Ran Y, Lan J, Bin Z, You J. Angew. Chem. Int. Ed. 2021; 60: 3493
  • 125 Beydoun K, Zaarour M, Williams JA. G, Doucet H, Guerchais V. Chem. Commun. 2012; 48: 1260
  • 126 Thivierge C, Bandichhor R, Burgess K. Org. Lett. 2007; 9: 2135
  • 127 Verbelen B, Leen V, Wang L, Boens N, Dehaen W. Chem. Commun. 2012; 48: 9129
  • 128 Yang X, Jiang L, Yang M, Zhang H, Lan J, Zhou F, Chen X, Wu D, You J. J. Org. Chem. 2018; 83: 9538
  • 129 Shimada T, Mori S, Ishida M, Furuta H. Beilstein J. Org. Chem. 2020; 16: 587
  • 130 Thiruna-vukkarasu VS, Donati M, Ackermann L. Org. Lett. 2012; 14: 3416
  • 131 Mayakrishnan S, Arun Y, Balachran C, Awale S, Maheswari NU, Perumal PT. ACS Omega 2017; 2: 2694
  • 132 Dutta PK, Ravva MK, Sen S. J. Org. Chem. 2019; 84: 1176
  • 133 Ma W, Tan Y, Wang Y, Li Z, Li Z, Gu L, Mei R, Cheng A. Org. Lett. 2021; 23: 6200
  • 134 Lian Y, Bergman RG, Lavis LD, Ellman JA. J. Am. Chem. Soc. 2013; 135: 7122
  • 135 Yang W, Qiao R, Chen J, Huang X, Liu M, Gao W, Ding J, Wu H. J. Org. Chem. 2015; 80: 482
  • 136 Umeda N, Tsurugi H, Satoh T, Miura M. Angew. Chem. Int. Ed. 2008; 47: 4019
  • 137 Zheng L, Hua R. J. Org. Chem. 2014; 79: 3930
  • 138 Villar JM, Suárez J, Varela JA, Saá C. Org. Lett. 2017; 19: 1702
  • 139 Jayakumar J, Parthasarathy K, Chen H, Lee H, Chuang C, Cheng H. Angew. Chem. Int. Ed. 2014; 53: 9889
  • 140 Peng S, Liu S, Zhang S, Cao S, Sun J. Org. Lett. 2015; 17: 5032
  • 141 Wu X, Xiong H, Sun S, Cheng J. Org. Lett. 2018; 20: 1396
  • 142 Li J, Liu J, Yin J, Zhang Y, Han W, Lan J, Wu D, Bin Z, You J. J. Org. Chem. 2019; 84: 15697
  • 143 Nepomnyashchii A, Broring M, Ahrens J, Bard A. J. Am. Chem. Soc. 2011; 133: 19498
  • 144 Patra A, Patalag JL, Jone PG, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 747
  • 145 Hsiao C, Annamalai P, Jayakumar J, Sun Y, Chuang C. Adv. Synth. Catal. 2021; 363: 1695
  • 146 Luo Y, Liu Z, Yang G, Wang T, Bin Z, Lan J, Wu D, You J. Angew. Chem. Int. Ed. 2021; 60: 18852
  • 147 Luo C.-Z, Gandeepan P, Jayakumar J, Parthasarathy K, Chang Y.-W, Cheng C.-H. Chem. Eur. J. 2013; 19: 14181
  • 148 Prakash S, Muralirajan K, Cheng H. Angew. Chem. Int. Ed. 2016; 55: 1844
  • 149 Ge Q.-M, Hu Y, Li B, Wang B.-Q. Org. Lett. 2016; 18: 2483
  • 150 Yin J, Tan M, Wu D, Jiang R, Li C, You J. Angew. Chem. Int. Ed. 2017; 56: 13094
  • 151 Liu Z, Xian Y, Lan J, Luo Y, Ma W, You J. Org. Lett. 2019; 21: 1037
  • 152 Wang Z, Yin J, Zhou F, Liu Y, You J. Angew. Chem. Int. Ed. 2019; 58: 254
  • 153 Jayakumar J, Vedarethinam G, Hsiao C, Sun Y, Chuang C. Angew. Chem. Int. Ed. 2020; 59: 689
  • 154 Chen X, Yan L, Liu Y, Yang Y, You J. Chem. Commun. 2020; 56: 15080
  • 155 Ma W, Zhang L, Shi Y, Ran Y, Liu Y, You J. Adv. Funct. Mater. 2020; 30: 2004511
  • 156 Yan L, Ma W, Lan J, Cheng H, Bin Z, Wu D, You J. Chem. Sci. 2021; 12: 2419
  • 157 Ulč J, Jacko J, Císařová I, Pospíšil L, Nečas D, Kotora M. Eur. J. Org. Chem. 2023; 26: e20230015
  • 158 Yin J, Zhou F, Zhu L, Yang M, Lan Y, You J. Chem. Sci. 2018; 9: 5488
  • 159 Wang K, Yan S, Han T, Wu Q, Yan N, Kang M, Ge J, Wang D, Tang BZ. J. Am. Chem. Soc. 2022; 144: 11788
  • 160 Fan D, Zhang F, Cui J, Wang D, Han T, Tang BZ. Sci. China Chem. 2023; 66: 1139
  • 161 Zhao D, Kim JH, Stegemann L, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 4508
  • 162 Kim JH, Gensch T, Zhao D, Stegemann L, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 10975
  • 163 Wang X, Zhang J, He Y, Chen D, Wang C, Yang F, Wang W, Ma Y, Szostak M. Org. Lett. 2020; 22: 5187
  • 164 Khot NP, Mahato P, T K S., Mukherjee S, Kapur M. Org. Lett. 2022; 24: 2186
  • 165 Knösel M, Reus M, Rosenberger A, Ziebolz D. Eur. J. Orthod. 2012; 34: 19
  • 166 Pu X, Zhang M, Lan J, Chen S, Liu Z, Liang W, Yang Y, Zhang M, You J. Org. Lett. 2019; 21: 1139
  • 167 Zhang M, Cheng R, Lan J, Zhang H, Yan L, Pu X, Huang Z, Wu D, You J. Org. Lett. 2019; 21: 4058
  • 168 Yamashita A, Nishiyama H, Inagi S, Tomita I. J. Polym. Sci., Part A: Polym. Chem. 2018; 56: 2771
  • 169 Li B, Seth K, Niu B, Pan L, Yang H, Ge H. Angew. Chem. Int. Ed. 2018; 57: 3401
  • 170 Liu D, Ding Q, Fu Y, Song Z, Peng Y. Org. Lett. 2019; 21: 2523
  • 171 Jang J, Hwang H, Choi L. Angew. Chem. Int. Ed. 2017; 56: 14474
  • 172 Li B, Lan J, Wu D, You J. Angew. Chem. Int. Ed. 2015; 54: 14008
  • 173 Li B, Tang G, Zhou L, Wu D, Lan J, Zhou L, Lu Z, You J. Adv. Funct. Mater. 2017; 27: 1605245
  • 174 Wang W, Lorion MM, Martinazzoli O, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10554
  • 175 Kaplanaris N, Son J, Mendive-Tapia L, Kopp A, Barth ND, Maksso I, Vendrell M, Ackermann L. Nat. Commun. 2021; 12: 3389
  • 176 Kalle & Co. AG, GB 201786A, 1923
  • 177 Huang C, Barlow S, Marder S. J. Org. Chem. 2011; 76: 2386
  • 178 Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K. Chem. Rev. 2010; 110: 6817
  • 179 Penner SS, Haraden J, Mates S. Energy 1992; 17: 883
  • 180 Lior N. Energy 2008; 33: 842
  • 181 Akamatu H, Inokuchi H, Matsunaga Y. Nature 1954; 173: 168
  • 182 Nakazono S, Imazaki Y, Yoo H, Yang J, Sasamori T, Tokitoh N, Cedric T, Kageyama H, Kim D, Shinokubo H, Osuka A. Chem. Eur. J. 2009; 15: 7530
  • 183 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
  • 184 Bullock JE, Vagnini MT, Ramanan C, Co DT, Wilson TM, Dicke JW, Marks TJ, Wasielewski MR. J. Phys. Chem. B 2010; 114: 1794
  • 185 Kamm V, Battagliarin G, Howard IA, Pisula W, Mavrinskiy A, Li C, Müllen K, Laquai F. Adv. Energy Mater. 2011; 1: 297
  • 186 Nakazono S, Easwaramoorthi S, Kim D, Shinokubo H, Osuka A. Org. Lett. 2009; 11: 5426
  • 187 Qiu W, Chen S, Sun X, Liu Y, Zhu D. Org. Lett. 2006; 8: 867
  • 188 Chao C.-C, Leung M.-K, Su YO, Chiu K.-Y, Lin T.-H, Shieh S.-J, Lin S.-C. J. Org. Chem. 2005; 70: 4323
  • 189 Heckelmann I, Lu ZA, Prentice JC, Auras F, Ronson TK, Friend RH, Nitschke JR, Feldmann S. Angew. Chem. Int. Ed. 2023; 62: e202216729
  • 190 Teraoka T, Hiroto S, Shinokubo H. Org. Lett. 2011; 13: 2532
  • 191 Battagliarin G, Li C, Enkelmann V, Müllen K. Org. Lett. 2011; 13: 3012
  • 192 Zhang L, He D, Liu Y, Wang K, Guo Z, Lin J, Zhang H.-J. Org. Lett. 2016; 18: 5908
  • 193 Thakur R, Singh I, Paul K. Asian J. Org. Chem. 2022; 11: e202100798
  • 194 Wu J, He D, Zhang L, Liu Y, Mo X, Lin J, Zhang H. Org. Lett. 2017; 19: 5438
  • 195 Zeng C, Xiao C, Feng X, Zhang L, Jiang W, Wang Z. Angew. Chem. Int. Ed. 2018; 57: 10933
  • 196 Wu J, He D, Wang Y, Su F, Guo Z, Lin J, Zhang HJ. Org. Lett. 2018; 20: 6117
  • 197 Chand T, Khamari L, Chopra D, Mukherjee S, Kapur M. Chem. Eur. J. 2022; 28: e202200723
  • 198 Stevenson KA, Yen SF, Yang NC, Boykin DW, Wilson WD. J. Med. Chem. 1984; 27: 1677
  • 199 Brana MF, Ramos A. Curr. Med. Chem.: Anti-Cancer Agents 2001; 1: 237
  • 200 Banerjee S, Veale EB, Phelan CM, Murphy SA, Tocci GM, Gillespie LJ, Frimannsson DO, Kelly JM, Gunnlaugsson T. Chem. Soc. Rev. 2013; 42: 1601
  • 201 Chand T, Khamari L, Mukherjee S, Kapur M. Org. Lett. 2023; 25: 4840