Skip to main content
Log in

Quantifying Entanglement by Purity in a Cavity-Magnon System

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We study the realization and transfer of entanglement in a cavity-magnon system consisting of two cavities positioned at different locations, each containing a microwave (MW) field mode and a magnon mode of the yttrium iron garnet (YIG) sphere. The magnon mode is coupled to the MW cavity mode via a linear beam splitter interaction. As reported by Benrass et al. (Int. J. Mod. Phys. B 36, 2250036, 2022), it has been shown that the logarithmic negativity remains nonzero in the coexistence zone, illustrating why the latter includes entangled states. Additionally, a novel method for quantifying entanglement in quantum systems based on purity was introduced. Based on this, the main objective of this work is to examine how purity can be taken as evidence for the mixedness and entanglement that characterize the cavity-cavity and the magnon-magnon subsystems. A comparison of the entanglement behaviors with those obtained for purity under the influence of different parameters demonstrates that this resembles the use of purity as a feature and a quantification of the degree of entanglement in the two-mode symmetric state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No data statement is available.

References

  1. C. Outeiral, M. Strahm, J. Shi, G.M. Morris, S.C. Benjamin, C.M. Deane, Comput. Mol. Sci. 11, 1481 (2021)

    Article  Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Phys. Today 54, 60 (2001)

    Google Scholar 

  3. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, A. Zeilinger, Nature 434, 169–176 (2005)

    Article  ADS  Google Scholar 

  4. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  5. D. Vitali, S. Gigan, A. Ferreira, H.R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  6. M.B. Plenio, S.S. Virmani, An introduction to entanglement theory. In Quantum information and coherence (pp. 173–209). Cham: Springer International Publishing (2014)

  7. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  8. C.H. Bennett, G. Brassard, C. Cr’epeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Murao, D. Jonathan, M.B. Plenio, V. Vedral, Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  11. H. Huebl et al., Phys. Rev. Lett. 111, 127003 (2013)

    Article  ADS  Google Scholar 

  12. D.Aoune, N. Benrass, N.Habiballah, M. Nassik, Int. J. Mod. Phys. B 2450053 (2023)

  13. Y. Tabuchi et al., Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  Google Scholar 

  14. X. Zhang et al., Phys. Rev. Lett. 113, 156401 (2014)

    Article  ADS  Google Scholar 

  15. M. Goryachev et al., Phys. Rev. Appl. 2, 054002 (2014)

    Article  ADS  Google Scholar 

  16. L. Bai et al., Phys. Rev. Lett. 114, 227201 (2015)

    Article  ADS  Google Scholar 

  17. D. Zhang et al., Npj Quantum Inf. 1, 15014 (2015)

    Article  ADS  Google Scholar 

  18. J. Bourhill et al., Phys. Rev. B 93, 144420 (2016)

    Article  ADS  Google Scholar 

  19. N. Kostylev, M. Goryachev, M.E. Tobar, Appl. Phys. Lett. 108, 062402 (2016)

    Article  ADS  Google Scholar 

  20. Y. Tabuchi et al., Science 349, 405 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Lachance-Quirion et al., Sci. Adv. 3, e1603150 (2017)

    Article  ADS  Google Scholar 

  22. M. Amazioug, B. Teklu, M. Asjad, ArXiv preprint  (2022) arXiv: 2211.17052

  23. A. Hidki, A. Lakhfif, J. El Qars, M. Nassik, Eur. Phys. J. D 76, 64 (2022)

    Article  ADS  Google Scholar 

  24. X. Zhang, C.-L. Zou, L. Jiang, H.X. Tang, Sci. Adv. 2, e1501286 (2016)

    Article  ADS  Google Scholar 

  25. J. Li, S.-Y. Zhu, G.S. Agarwal, Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  26. J. Li, S.-Y. Zhu, G.S. Agarwal, Phys. Rev. A 99, 021801(R) (2019)

    Article  ADS  Google Scholar 

  27. R.W. Damon, J.R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961)

    Article  ADS  Google Scholar 

  28. J.F. Dillon Jr., J. Appl. Phys. 31, 1605–1614 (1960)

    Article  ADS  Google Scholar 

  29. J.F. Dillon, Phys. Rev. 112, 59–63 (1958)

    Article  ADS  Google Scholar 

  30. J. Holanda et al., Nat. Phys 14, 500–506 (2018)

    Article  Google Scholar 

  31. S.M. Rezende et al., Phys. Rev. B 103, 144430 (2021)

    Article  ADS  Google Scholar 

  32. J. Holanda et al., Appl. Phys. Lett. 118, 022409 (2021)

    Article  ADS  Google Scholar 

  33. A. Lakhfif, A. Hidki, J. El Qars, M. Nassik, Phys. Scr. 97, 095102 (2022)

    Article  ADS  Google Scholar 

  34. A. Lakhfif, A. Hidki, J. El Qars, M. Nassik, Phys. Lett. A 445, 128247 (2022)

    Article  Google Scholar 

  35. D. Aoune, N. Habiballah, J. Russ. Laser Res. 43, 406 (2022)

    Article  Google Scholar 

  36. N. Benrass, A. Lakhfif, M. Amazioug et al., Int. J. Mod. Phys. B 36, 2250036 (2022)

    Article  ADS  Google Scholar 

  37. G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. Lett. 92, 087901 (2004)

    Article  ADS  Google Scholar 

  38. M. Yu, S.Y. Zhu, J. Li, J PHYS B-AT MOL OPT 53, 065402 (2020)

    Article  ADS  Google Scholar 

  39. J. Li, S. Gröblacher, Quantum Sci. Technol. 6, 024005 (2021)

    Article  ADS  Google Scholar 

  40. G. Vidal, R.F. Werner, Phy. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  41. M.G.A. Paris et al., Phys. Rev. A 68, 012314 (2003)

    Article  ADS  Google Scholar 

  42. M. Amazioug et al., Chin. Phys. B 29, 020304 (2020)

    Article  ADS  Google Scholar 

  43. G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. Lett. 92, 087901 (2004)

    Article  ADS  Google Scholar 

  44. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  Google Scholar 

  45. L. Mazzola, M. Paternostro, Phys. Rev. A 83, 062335 (2011)

    Article  ADS  Google Scholar 

  46. A. Lakhfif, J. El Qars, M. Nassik, Int. J. Quantum Inf. 18, 2150002 (2020)

    Article  MathSciNet  Google Scholar 

  47. N. Benrass, D. Aoune, N. Habiballah et al., M.P.L.A. 37, 2250007 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Benrass.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benrass, N., Hidki, A., Lakhfif, A. et al. Quantifying Entanglement by Purity in a Cavity-Magnon System. Braz J Phys 54, 71 (2024). https://doi.org/10.1007/s13538-024-01448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01448-4

Keywords

Navigation