Skip to main content
Log in

Roles of Plasminogen Activator Inhibitor-1 in Heterotopic Ossification Induced by Achilles Tenotomy in Thermal Injured Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Heterotopic ossification (HO) is the process by which ectopic bone forms at an extraskeletal site. Inflammatory conditions induce plasminogen activator inhibitor 1 (PAI-1), an inhibitor of fibrinolysis, which regulates osteogenesis. In the present study, we investigated the roles of PAI-1 in the pathophysiology of HO induced by trauma/burn treatment using PAI-1-deficient mice. PAI-1 deficiency significantly promoted HO and increased the number of alkaline phosphatase (ALP)-positive cells in Achilles tendons after trauma/burn treatment. The mRNA levels of inflammation markers were elevated in Achilles tendons of both wild-type and PAI-1-deficient mice after trauma/burn treatment and PAI-1 mRNA levels were elevated in Achilles tendons of wild-type mice. PAI-1 deficiency significantly up-regulated the expression of Runx2, Osterix, and type 1 collagen in Achilles tendons 9 weeks after trauma/burn treatment in mice. In in vitro experiments, PAI-1 deficiency significantly increased ALP activity and mineralization in mouse osteoblasts. Moreover, PAI-1 deficiency significantly increased ALP activity and up-regulated osteocalcin expression during osteoblastic differentiation from mouse adipose-tissue-derived stem cells, but suppressed the chondrogenic differentiation of these cells. In conclusion, the present study showed that PAI-1 deficiency promoted HO in Achilles tendons after trauma/burn treatment partly by enhancing osteoblast differentiation and ALP activity in mice. Endogenous PAI-1 may play protective roles against HO after injury and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW (2019) Heterotopic ossification: a comprehensive review. JBMR Plus 3(4):e10172

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cappato S, Gamberale R, Bocciardi R, Brunelli S (2020) Genetic and acquired heterotopic ossification: a translational tale of mice and men. Biomedicines 8(12):611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pignolo RJ, Kaplan FS (2018) Clinical staging of fibrodysplasia ossificans progressiva (FOP). Bone 109:111–114

    Article  PubMed  Google Scholar 

  4. Brewer N, Fong JT, Zhang D, Ramaswamy G, Shore EM (2021) Gnas inactivation alters subcutaneous tissues in progression to heterotopic ossification. Front Genet 26(12):633206

    Article  Google Scholar 

  5. Cao G, Zhang S, Wang Y, Quan S, Yue C, Yao J, Alexander PG, Tan H (2023) Pathogenesis of acquired heterotopic ossification: risk factors, cellular mechanisms, and therapeutic implications. Bone 168:116655

    Article  CAS  PubMed  Google Scholar 

  6. Levesque JP, Sims NA, Pettit AR, Alexander KA, Tseng HW, Torossian F, Genêt F, Lataillade JJ, Le Bousse-Kerdilès MC (2018) Macrophages driving heterotopic ossification: convergence of genetically-driven and trauma-driven mechanisms. J Bone Miner Res 33(2):365–366

    Article  PubMed  Google Scholar 

  7. Sorkin M, Huber AK, Hwang C, Carson WF 4th, Menon R, Li J, Vasquez K, Pagani C, Patel N, Li S, Visser ND, Niknafs Y, Loder S, Scola M, Nycz D, Gallagher K, McCauley LK, Xu J, James AW, Agarwal S, Kunkel S, Mishina Y, Levi B (2020) Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat Commun 11(1):722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Forsberg JA, Potter BK, Polfer EM, Safford SD, Elster EA (2014) Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res 472(9):2845–2854

    Article  PubMed  PubMed Central  Google Scholar 

  9. Evans KN, Potter BK, Brown TS, Davis TA, Elster EA, Forsberg JA (2014) Osteogenic gene expression correlates with development of heterotopic ossification in war wounds. Clin Orthop Relat Res 472(2):396–404

    Article  PubMed  Google Scholar 

  10. Li L, Jiang Y, Lin H, Shen H, Sohn J, Alexander PG, Tuan RS (2019) Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production. J Orthop Translat 5(18):142–153

    Article  Google Scholar 

  11. Wang X, Li F, Xie L, Crane J, Zhen G, Mishina Y, Deng R, Gao B, Chen H, Liu S, Yang P, Gao M, Tu M, Wang Y, Wan M, Fan C, Cao X (2018) Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice. Nat Commun 9(1):551

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mundy C, Yao L, Sinha S, Chung J, Rux D, Catheline SE, Koyama E, Qin L, Pacifici M (2021) Activin a promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice. Sci Signal 14(669):eabd0536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, Tseng HW, Arouche N, Boutin L, Kulina I, Salga M, Jose B, Pettit AR, Clay D, Rochet N, Vlachos E, Genet G, Debaud C, Denormandie P, Genet F, Sims NA, Banzet S, Levesque JP, Lataillade JJ, Le Bousse-Kerdilès MC (2017) Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight 2(21):e96034

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tuzmen C, Verdelis K, Weiss L, Campbell P (2018) Crosstalk between substance P and calcitonin gene-related peptide during heterotopic ossification in murine Achilles tendon. J Orthop Res 36(5):1444–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Wang L, Cao H, Chen N, Yan B, Ao X, Zhao H, Chu J, Huang M, Zhang Z (2019) Neurotrophin-3 acts on the endothelial-mesenchymal transition of heterotopic ossification in rats. J Cell Mol Med 23(4):2595–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaji H (2016) Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol 6(4):1873–1896

    Article  PubMed  Google Scholar 

  17. Vaughan DE (2005) PAI-1 and atherothrombosis. J Thromb Haemost 3(8):1879–1883

    Article  CAS  PubMed  Google Scholar 

  18. Pandolfi A, Cetrullo D, Polishuck R, Alberta MM, Calafiore A, Pellegrini G, Vitacolonna E, Capani F, Consoli A (2001) Plasminogen activator inhibitor type 1 is increased in the arterial wall of type II diabetic subjects. Arterioscler Thromb Vasc Biol 21(8):1378–1382

    Article  CAS  PubMed  Google Scholar 

  19. Loskutoff DJ, Samad F (1998) The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arterioscler Thromb Vasc Biol 18(1):1–6

    Article  CAS  PubMed  Google Scholar 

  20. Okada K, Nishioka M, Kaji H (2020) Roles of fibrinolytic factors in the alterations in bone marrow hematopoietic stem/progenitor cells during bone repair. Inflamm Regen 16(40):22

    Article  Google Scholar 

  21. Rundle CH, Wang X, Wergedal JE, Mohan S, Lau KH (2008) Fracture healing in mice deficient in plasminogen activator inhibitor-1. Calcif Tissue Int 83(4):276–284

    Article  CAS  PubMed  Google Scholar 

  22. Daci E, Verstuyf A, Moermans K, Bouillon R, Carmeliet G (2000) Mice lacking the plasminogen activator inhibitor 1 are protected from trabecular bone loss induced by estrogen deficiency. J Bone Miner Res 15(8):1510–1516

    Article  CAS  PubMed  Google Scholar 

  23. Mao L, Kawao N, Tamura Y, Okumoto K, Okada K, Yano M, Matsuo O, Kaji H (2014) Plasminogen activator inhibitor-1 is involved in impaired bone repair associated with diabetes in female mice. PLoS ONE 9(3):e92686

    Article  PubMed  PubMed Central  Google Scholar 

  24. Okada K, Okamoto T, Okumoto K, Takafuji Y, Ishida M, Kawao N, Matsuo O, Kaji H (2020) PAI-1 is involved in delayed bone repair induced by glucocorticoids in mice. Bone 134:115310

    Article  CAS  PubMed  Google Scholar 

  25. Takafuji Y, Tatsumi K, Ishida M, Kawao N, Okada K, Matsuo O, Kaji H (2019) Plasminogen activator inhibitor-1 deficiency suppresses osteoblastic differentiation of mesenchymal stem cells in mice. J Cell Physiol 234(6):9687–9697

    Article  CAS  PubMed  Google Scholar 

  26. Tamura Y, Kawao N, Okada K, Yano M, Okumoto K, Matsuo O, Kaji H (2013) Plasminogen activator inhibitor-1 is involved in streptozotocin-induced bone loss in female mice. Diabetes 62(9):3170–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsumoto Y, Ikeya M, Hino K, Horigome K, Fukuta M, Watanabe M, Nagata S, Yamamoto T, Otsuka T, Toguchida J (2015) New protocol to optimize iPS cells for genome analysis of fibrodysplasia ossificans progressiva. Stem Cells 33(6):1730–1742

    Article  CAS  PubMed  Google Scholar 

  28. Medina A, Shankowsky H, Savaryn B, Shukalak B, Tredget EE (2014) Characterization of heterotopic ossification in burn patients. J Burn Care Res 35(3):251–256

    Article  PubMed  Google Scholar 

  29. Peterson JR, Agarwal S, Brownley RC, Loder SJ, Ranganathan K, Cederna PS, Mishina Y, Wang SC, Levi B (2015) Direct mouse trauma/burn model of heterotopic ossification. J Vis Exp 102:e52880

    Google Scholar 

  30. Mizukami Y, Kawao N, Takafuji Y, Ohira T, Okada K, Jo JI, Tabata Y, Kaji H (2023) Matrix vesicles promote bone repair after a femoral bone defect in mice. PLoS ONE 18(4):e0284258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H (2013) Plasminogen plays a crucial role in bone repair. J Bone Miner Res 28(7):1561–1574

    Article  CAS  PubMed  Google Scholar 

  32. Estes BT, Diekman BO, Gimble JM, Guilak F (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5(7):1294–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moritake A, Kawao N, Okada K, Tatsumi K, Ishida M, Okumoto K, Matsuo O, Akagi M, Kaji H (2017) Plasminogen activator inhibitor-1 deficiency enhances subchondral osteopenia after induction of osteoarthritis in mice. BMC Musculoskelet Disord 18(1):392

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ehara H, Takafuji Y, Tatsumi K, Okada K, Mizukami Y, Kawao N, Matsuo O, Kaji H (2021) Role of plasminogen activator inhibitor-1 in muscle wasting induced by a diabetic state in female mice. Endocr J 68(12):1421–1428

    Article  CAS  PubMed  Google Scholar 

  35. Tamura Y, Kawao N, Yano M, Okada K, Okumoto K, Chiba Y, Matsuo O, Kaji H (2015) Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes 64(6):2194–2206

    Article  CAS  PubMed  Google Scholar 

  36. Dey D, Wheatley BM, Cholok D, Agarwal S, Yu PB, Levi B, Davis TA (2017) The traumatic bone: trauma-induced heterotopic ossification. Transl Res 186:95–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Forster IC, Hernando N, Biber J, Murer H (2013) Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med 34(2–3):386–95

    Article  CAS  PubMed  Google Scholar 

  38. Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8(3):133–143

    Article  CAS  PubMed  Google Scholar 

  39. Cipriano CA, Pill SG, Keenan MA (2009) Heterotopic ossification following traumatic brain injury and spinal cord injury. J Am Acad Orthop Surg 17(11):689–697

    Article  PubMed  Google Scholar 

  40. Farkas GJ, Gater DR (2018) Neurogenic obesity and systemic inflammation following spinal cord injury: a review. J Spinal Cord Med 41(4):378–387

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Shigeaki Yamanaka for his technical expertise.

Funding

The present study was supported by the following grants: A JSPS KAKENHI Grant-in-Aid for Early Career Scientists (No. 22K16755) to Y. M and Grants-in-Aid for Scientific Research (No. C:20K09514; No. C:KK230021) to H.K.; The Salt Science Research Foundation (No. 22C1) to H.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kaji.

Ethics declarations

Ethics approval

All mouse experiments were performed according to the Guide for the Care and Use of Laboratory Animals from the National Institutes of Health and the institutional guidelines for the use and care of laboratory animals at Kindai University. The protocol was approved by the Experimental Animal Welfare Committee of Kinki University (permit numbers: KAME-2022–073).

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 6321 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizukami, Y., Kawao, N., Ohira, T. et al. Roles of Plasminogen Activator Inhibitor-1 in Heterotopic Ossification Induced by Achilles Tenotomy in Thermal Injured Mice. Calcif Tissue Int 114, 535–549 (2024). https://doi.org/10.1007/s00223-024-01193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-024-01193-5

Keywords

Navigation