Skip to main content

Advertisement

Log in

Current and Developing Pharmacologic Agents for Improving Skeletal Health in Adults with Osteogenesis Imperfecta

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteogenesis imperfecta (OI) is a genetic disorder characterized by increased bone fragility largely caused by defects in structure, synthesis, or post-translational processing of type I collagen. Drugs currently used to improve skeletal health in OI were initially developed to treat osteoporosis and clinical trials are ongoing to study their effectiveness in OI adults. Additionally, novel bone-protective agents are in preclinical studies and various phases of OI clinical trials. This review summarizes current knowledge on available pharmacologic agents and current drug trials involving OI participants. A PubMed online database search of all study types published in the English language using the terms “osteogenesis imperfecta,” “OI,” and “brittle bone disease” was performed in August 2022. Articles screened were restricted to adults. A ClinicalTrials.gov database search of all studies involving “osteogenesis imperfecta” was performed in August 2023. Although clinical trial data are limited, bisphosphonates and teriparatide may be useful in improving bone mineral density. As of yet, no clinical trials are available that adequately evaluate the usefulness of current therapies in reducing fracture risk. Several therapeutics, including teriparatide, setrusumab, anti-TGF-β antibodies, and allogeneic stem cells, are being studied in clinical trials. Preclinical studies involving Dickkopf-1 antagonists present promising data in non-OI bone disease, and could be useful in OI. Research is ongoing to improve therapeutic options for adults with OI and clinical trials involving gene-editing may be possible in the coming decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387(10028):1657–1671

    Article  CAS  PubMed  Google Scholar 

  2. Liu W et al (2023) Approach to the patient: pharmacological therapies for fracture risk reduction in adults with osteogenesis imperfecta. J Clin Endocrinol Metab 108:1787–1796

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dwan K et al (2016) Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev 10(10):Cd005088

    PubMed  Google Scholar 

  4. Adami S et al (2003) Intravenous neridronate in adults with osteogenesis imperfecta. J Bone Miner Res 18(1):126–130

    Article  CAS  PubMed  Google Scholar 

  5. Chevrel G et al (2006) Effects of oral alendronate on BMD in adult patients with osteogenesis imperfecta: a 3-year randomized placebo-controlled trial. J Bone Miner Res 21(2):300–306

    Article  CAS  PubMed  Google Scholar 

  6. Pavón de Paz I et al (2019) Acute and long-term effects of zoledronate in adult patients with osteogenesis imperfecta. An observational Spanish study with five years of follow-up. Endocrinol Diabetes Nutr (Engl Ed) 66(2):108–116

    PubMed  Google Scholar 

  7. Viapiana O et al (2017) Long-term effects of neridronate in adults with osteogenesis imperfecta: an observational three-year Italian study. Calcif Tissue Int 100(4):341–347

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro JR et al (2010) Bone mineral density and fracture rate in response to intravenous and oral bisphosphonates in adult osteogenesis imperfecta. Calcif Tissue Int 87(2):120–129

    Article  CAS  PubMed  Google Scholar 

  9. Xu XJ et al (2016) The clinical characteristics and efficacy of bisphophonates in adult patients with osteogenesis Imperfecta. Endocr Pract 22(11):1267–1276

    Article  PubMed  Google Scholar 

  10. Shapiro J (2014) Osteogenesis imperfecta: maintenance of adult bone health. In: Shapiro J (ed) Osteogenesis imperfecta a translational approach to brittle bone disease. Academic Press, Cambridge, pp 509–518

    Google Scholar 

  11. Bradbury LA et al (2012) Risedronate in adults with osteogenesis imperfecta type I: increased bone mineral density and decreased bone turnover, but high fracture rate persists. Osteoporos Int 23(1):285–294

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  12. Eastell R et al (2019) Pharmacological management of osteoporosis in postmenopausal women: an endocrine society* clinical practice guideline. J Clin Endocrinol Metab 104(5):1595–1622

    Article  PubMed  Google Scholar 

  13. Black DM et al (2012) Continuing bisphosphonate treatment for osteoporosis–for whom and for how long? N Engl J Med 366(22):2051–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi T et al (2018) Efficacy and Safety of denosumab therapy for osteogenesis imperfecta patients with osteoporosis case series. J Clin Med 7(12):479

    Article  PubMed  PubMed Central  Google Scholar 

  15. Boyce AM (2017) Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep 15(4):283–292

    Article  PubMed  PubMed Central  Google Scholar 

  16. Trejo P, Rauch F, Ward L (2018) Hypercalcemia and hypercalciuria during denosumab treatment in children with osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact 18(1):76–80

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Neer RM et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441

    Article  CAS  PubMed  Google Scholar 

  18. Body JJ et al (2002) A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87(10):4528–4535

    Article  CAS  PubMed  Google Scholar 

  19. Miller PD et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316(7):722–733

    Article  CAS  PubMed  Google Scholar 

  20. Brent MB (2021) Abaloparatide: a review of preclinical and clinical studies. Eur J Pharmacol 909:174409

    Article  CAS  PubMed  Google Scholar 

  21. Orwoll ES et al (2014) Evaluation of teriparatide treatment in adults with osteogenesis imperfecta. J Clin Invest 124(2):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gatti D et al (2013) Teriparatide treatment in adult patients with osteogenesis imperfecta type I. Calcif Tissue Int 93(5):448–452

    Article  CAS  PubMed  Google Scholar 

  23. Leali PT et al (2017) Efficacy of teriparatide vs neridronate in adults with osteogenesis imperfecta type I: a prospective randomized international clinical study. Clin Cases Miner Bone Metab 14(2):153–156

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hansson L, Hedner T, Dahlöf B (1992) Prospective randomized open blinded end-point (PROBE) study. A novel design for intervention trials. Prospective randomized open blinded end-point. Blood Press 1(2):113–119

    Article  CAS  PubMed  Google Scholar 

  25. Hald JD et al (2023) Protocol of a randomised trial of teriparatide followed by zoledronic acid to reduce fracture risk in adults with osteogenesis imperfecta. BMJ Open 13(11):e078164

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saag KG et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377(15):1417–1427

    Article  CAS  PubMed  Google Scholar 

  27. Uehara M et al (2022) Efficacy of romosozumab for osteoporosis in a patient with osteogenesis imperfecta: a case report. Mod Rheumatol Case Rep 6(1):128–133

    Article  PubMed  Google Scholar 

  28. Glorieux, F.H., et al., Setrusumab for the Treatment of Osteogenesis Imperfecta (OI): Results from the Phase 2b ASTEROID Study. J Bone Miner Res. 36.

  29. Lewiecki, E.M., (2023) Evaluating setrusumab for the treatment of osteogenesis imperfecta: phase 2 data from the phase 2/3 ORBIT study. J Bone Miner Res. 38(2).

  30. Grafe I et al (2014) Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med 20(6):670–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morris JC et al (2014) Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 9(3):e90353

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  32. Vincenti F et al (2017) A phase 2, double-blind, placebo-controlled, randomized study of fresolimumab in patients with steroid-resistant primary focal segmental glomerulosclerosis. Kidney Int Rep 2(5):800–810

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rice LM et al (2015) Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest 125(7):2795–2807

    Article  PubMed  PubMed Central  Google Scholar 

  34. Song IW et al (2022) Targeting TGF-β for treatment of osteogenesis imperfecta. J Clin Invest 132(7):e152571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Florio M et al (2016) A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun 7:11505

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Li X et al (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26(11):2610–2621

    Article  CAS  PubMed  Google Scholar 

  37. Iyer SP et al (2014) A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol 167(3):366–375

    Article  CAS  PubMed  Google Scholar 

  38. Infante A et al (2021) Reiterative infusions of MSCs improve pediatric osteogenesis imperfecta eliciting a pro-osteogenic paracrine response: TERCELOI clinical trial. Clin Transl Med 11(1):e265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the BBDC (1U54AR068069–0), a part of the NCATS’ RDCRN. BBDC is funded through a collaboration between the ORDR of NCATS, NIAMS, NIHMS, NIDCR, and NICHD. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The BBDC is also supported by the OI Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winnie Liu.

Ethics declarations

Conflict of Interest

Winnie Liu has nothing to disclose. Lindsey Nicol receives consulting fees from Egetis and Ultragenyx. Eric Orwoll receives consulting fees from Ultragenyx, Angitia, and Amgen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Nicol, L. & Orwoll, E. Current and Developing Pharmacologic Agents for Improving Skeletal Health in Adults with Osteogenesis Imperfecta. Calcif Tissue Int (2024). https://doi.org/10.1007/s00223-024-01188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00223-024-01188-2

Keywords

Navigation