Skip to main content
Log in

State of the Art and Prospects for the Development of Methods for Determining the Group Hydrocarbon Composition (SARA Composition) of Crude Oil and Petroleum Products

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The state of the art (the past 5 years, according to Scopus, Web of Science, Google Academia, Mendeley, eLibrary, and CyberLeninka databases) in the field of determining the group hydrocarbon composition of crude oil and petroleum products (SARA analysis) is discussed. Preparative and instrumental methods for the group composition analysis are considered. These include chromatography (liquid adsorption chromatography, thin-layer chromatography, high-performance liquid chromatography, two-dimensional liquid chromatography), extraction (solid-phase extraction), and nuclear magnetic resonance. Separate attention is paid to mathematical modeling for predicting the SARA composition of various petroleum objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.

REFERENCES

  1. Minale, M., Merola, M.C., and Carotenuto, C., Fuel Process. Technol., 2018, vol. 177, pp. 299–308. https://doi.org/10.1016/j.fuproc.2018.05.016

    Article  CAS  Google Scholar 

  2. Qian, K., Energy Fuels, 2021, vol. 35, no. 22, pp. 18008–18018. https://doi.org/10.1021/acs.energyfuels.1c01783

    Article  CAS  Google Scholar 

  3. Doherty, R., Rezaee, S., Enayat, S., Tavakkoli, M., and Vargas, F.M., in Asphaltene Deposition: Fundamentals, Prediction, Prevention, and Remediation, Vargas, F.M. and Tavakkoli, M., Eds., Boca Raton: CRC, 2018. https://doi.org/10.1201/9781315268866

    Google Scholar 

  4. van Beek, F.T., Edam, R., Pirok, B.W.J., Genuit, W.J.L., and Schoenmakers, P.J., J. Chromatogr. A, 2018, vol. 1564, pp. 110–119. https://doi.org/10.1016/j.chroma.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  5. Park, J.W., Cho, Y., Son, S., Kim, S., and Lee, K.B., Energy Fuels, 2021, vol. 35, pp. 13756−13765. https://doi.org/10.1021/acs.energyfuels.1c01802

    Article  CAS  Google Scholar 

  6. Shang, H., Yue, Y., Zhang, J., Wang, J., Shi, Q., Zhang, W., Omar, S., and Liu, L., Fuel Process. Technol., 2018, vol. 170, pp. 44–52. https://doi.org/10.1016/j.fuproc.2017.10.021

    Article  CAS  Google Scholar 

  7. Borisov, D.N., Milordov, D.V., Yakubova, S.G., and Yakubov, M.R., in Recent Insights in Petroleum Science and Engineering, Zoveidavianpoor, M., Ed., London: IntechOpen, 2018. https://doi.org/10.5772/intechopen.72673

    Google Scholar 

  8. Mukhamatdinov, I.I., Vakhin, A.V., Sitnov, S.A., Khaidarova, A.R., Zaripova, R.D., Garifullina, E.I., Katnov, V.E., and Stepin, S.N., Chem. Technol. Fuels Oils, 2018, vol. 54, no. 5, pp. 574–580. https://doi.org/10.1007/s10553-018-0962-3

    Article  CAS  Google Scholar 

  9. Cevada, E., Roos, K., Alvarez, F., Carlotti, S., and Vazquez, F., Fuel, 2018, vol. 221, pp. 447–454. https://doi.org/10.1016/j.fuel.2018.02.136

    Article  CAS  Google Scholar 

  10. Wang, T., Wang, J., Meng, X., Chu, G., and Liu, Ch., Petrol. Sci. Technol., 2018, vol. 36, no. 15, pp. 1–6. https://doi.org/10.1080/10916466.2018.1463255

    Article  CAS  Google Scholar 

  11. Salehi, R., Ehsani, M.R., and Behbahani, T.J., Petrol. Chem., 2021, vol. 61, no. 5, pp. 631–639. https://doi.org/10.1134/S0965544121030051

    Article  CAS  Google Scholar 

  12. Yang, Ch., Xie, J., Wu, Sh., Amirkhanian, S., Zhou, X., Ye, Q., Hu, R., and Yang, D., Constr. Build. Mater., 2020, vol. 235, ID 117437. https://doi.org/10.1016/j.conbuildmat.2019.117437

    Article  CAS  Google Scholar 

  13. Ding, W., Hou, D., Gan, J., Wu, P., Zhang, M., and George, S.C., Palaeogeogr. Palaeocl., 2021, vol. 567, ID 110205. https://doi.org/10.1016/j.palaeo.2020.110205

    Article  Google Scholar 

  14. Garaniya, V., McWilliam, D., Goldsworthy, L., and Ghiji, M., Fuel, 2018, vol. 227, pp. 67–78. https://doi.org/10.1016/j.fuel.2018.04.094

    Article  CAS  Google Scholar 

  15. Corbett, L.W., Anal. Chem., 1969, vol. 41, no. 4, pp. 576–579. https://doi.org/10.1021/ac60273a004

    Article  CAS  Google Scholar 

  16. Jewell, D.M., Weber, J.H., Bunger, J.W., Plancher, H., and Latham, D.R., Anal. Chem., 1972, vol. 44, no. 8, pp. 1391–1395. https://doi.org/10.1021/ac60316a003

    Article  CAS  Google Scholar 

  17. Hsu, Ch.S. and Robinson, P.R., Petroleum Science and Technology, Cham: Springer Nature, 2019, pp. 62–64. https://doi.org/10.1007/978-3-030-16275-7

    Article  Google Scholar 

  18. Rezaee, S., Doherty, R., Tavakkoli, M., and Vargas, F.M., Energy Fuels, 2019, vol. 33, pp. 708–713. https://doi.org/10.1021/acs.energyfuels.8b03328

    Article  CAS  Google Scholar 

  19. Hasanvand, M., Shadadeh, M., and Ahmadi, M.A., Petrol. Coal, 2018, vol. 60, no. 5, pp. 832–841. https://www.vurup.sk/wp-content/uploads/2018/08/PC_4_2018_Shadadeh_52cor1.pdf (Oct. 13, 2023)

    CAS  Google Scholar 

  20. Luz, M.S. and Oliveira, P.V., Talanta, 2019, vol. 199, pp. 147–154. https://doi.org/10.1016/j.talanta.2019.01.096

    Article  CAS  PubMed  Google Scholar 

  21. Kashapova, L.A., Marushkin, A.B., Sidorov, G.M., Lapshin, I.G., and Pruchai, V.S., Bashk. Khim. Zh., 2018, vol. 25, no. 3, pp. 84–85. https://doi.org/10.17122/bcj-2018-3-84-85

    Article  Google Scholar 

  22. Chemodanov, A.E., Vakhin, A.V., Sitnov, S.A., and Feoktistov, D.A., Gruppovoi sostav nefti i metody ego izucheniya (Group Composition of Crude Oil and Methods for Studying It), Kazan: Kazanskii Feder. Univ., 2018, pp. 7–9.

    Google Scholar 

  23. Yakubova, S.G., Abilova, G.R., Tazeeva, E.G., Borisova, Yu.Yu., Milordov, D.V., Tazeev, D.I., Mironov, N.A., and Yakubov, M.R., Petrol. Chem., 2021, vol. 61, no. 5, pp. 561–567. https://doi.org/10.1134/S0965544121060049

    Article  CAS  Google Scholar 

  24. Farmani, Z. and Schrader, W.A., Energies, 2019, vol. 12, ID 3455. https://doi.org/10.3390/en12183455

    Article  CAS  Google Scholar 

  25. Santos, J.M., Vetere, A., Wisniewski, A., Eberlin, M.N., and Schrader, W., Energy Fuels, 2020, vol. 34, no. 12, pp. 16006–16013. https://doi.org/10.1021/acs.energyfuels.0c02833

    Article  CAS  Google Scholar 

  26. Santos, J.M., Vetere, A., Wisniewski, A., Jr., Eberlin, M.N., and Schrader, W., Energies, 2018, vol. 11, ID 2767. https://doi.org/10.3390/en11102767

    Article  CAS  Google Scholar 

  27. Vetere, A., Profrock, D., and Schrader, W., Energy Fuels, 2021, vol. 35, pp. 8723–8732. https://doi.org/10.1021/acs.energyfuels.1c00491

    Article  CAS  Google Scholar 

  28. Akinola, A.S., Adebiyi, F.M., Santoro, A., and Mastrolitti, S., Petrol. Sci. Technol., 2018, vol. 36, no. 6, pp. 429–436. https://doi.org/10.1080/10916466.2018.1425720

    Article  CAS  Google Scholar 

  29. Cheng, X., Hou, D., and Xu, Ch., Org. Geochem., 2018, vol. 123, pp. 38–43. https://doi.org/10.1016/j.orggeochem.2018.06.008

    Article  ADS  CAS  Google Scholar 

  30. Kok, M.V., Varfolomeev, M.A., and Nurgaliev, D.K., J. Petrol. Sci. Eng., 2019, vol. 179, pp. 1–6. https://doi.org/10.1016/j.petrol.2019.04.026

    Article  Google Scholar 

  31. Rezaee, S., Tovakkoli, M., Doherty, R., and Vargas, F.M., Petrol. Sci. Technol., 2020, vol. 38, no. 21, pp. 955–961. https://doi.org/10.1080/10916466.2020.1790598

    Article  CAS  Google Scholar 

  32. Kotarba, M.J., Bilkiewicz, E., Jurek, K., Wieclaw, D., and Machowski, G., Int. J. Earth Sci., 2021, vol. 110, pp. 1653–1679. https://doi.org/10.1007/s00531-021-02035-7

    Article  CAS  Google Scholar 

  33. Alves, C.A., Yanes, J.F.R., Feitosa, F.X., and de Sant’Ana, H.B., J. Petrol. Sci. Eng., 2022, vol. 208, part E, ID 109268. https://doi.org/10.1016/j.petrol.2021.109268

    Article  CAS  Google Scholar 

  34. Milordov, D.V., Abilova, G.R., Yakubova, S.G., Tazeeva, E.G., and Manaure, D.A., Petrol. Sci. Technol., 2020, vol. 38, no. 4, pp. 405–410. https://doi.org/10.1080/10916466.2019.1702684

    Article  CAS  Google Scholar 

  35. Katano, K., Teratani, Sh., Suzuki, T., Tanaka, R., Kato, H., and Norinaga, K., Energy Fuels, 2021, vol. 35, no. 17, pp. 13687–13699. https://doi.org/10.1021/acs.energyfuels.1c01429

    Article  CAS  Google Scholar 

  36. Al-Muntaser, A.A., Varfolomeev, M.A., Suwaid, M.A., Yuan, Ch., Chemodanov, A.E., Feoktistov, D.A., Rakhmatullin, I.Z., Abbas, M., Dominguez-Alvarez, E., Akhmadiyarov, A.A., Klochkov, V.V., and Amerkhanov, M.I., J. Petrol. Sci. Eng., 2020, vol. 184, ID 106592. https://doi.org/10.1016/j.petrol.2019.106592

    Article  CAS  Google Scholar 

  37. Zhang, H., Huang, H., and Yin, M., Minerals, 2022, vol. 12, no. 7, p. 802. https://doi.org/10.3390/min12070802

    Article  ADS  CAS  Google Scholar 

  38. Nasyrova, Z.R., Kayukova, G.P., Vakhin, A.V., Gareev, B.I., and Eskin, A.A., Petrol. Chem., 2021, vol. 61, no. 5, pp. 608–623. https://doi.org/10.1134/S0965544121060062

    Article  CAS  Google Scholar 

  39. Zhang, K., Liu, R., Ding, W., Li, L., and Liu, Zh., Int. J. Coal Geol., 2022, vol. 254, ID 103972. https://doi.org/10.1016/j.coal.2022.103972

    Article  CAS  Google Scholar 

  40. Akmaz, S., Alpak, A.C., Haktanir, M., and Yasar, M., J. Petrol. Sci. Eng., 2020, vol. 195, ID 107923. https://doi.org/10.1016/j.petrol.2020.107923

    Article  CAS  Google Scholar 

  41. Zhu, Y., Tian, F., Liu, Y., Cui, L., Dan, Y., Du, Ch., and Li, D., Fuel, 2021, vol. 292, ID 120362. https://doi.org/10.1016/j.fuel.2021.120362

    Article  CAS  Google Scholar 

  42. Okhotnikova, E.S., Ganeeva, Yu.M., Frolov, I.N., Firsin, A.A., and Yusupova, T.N., J. Therm. Anal. Calorim., 2019, vol. 138, pp. 1243–1249. https://doi.org/10.1007/s10973-019-08172-1

    Article  CAS  Google Scholar 

  43. Schwettmann, K., Hohne, Ph., and Stephan, D., Mater. Struct., 2022, vol. 55, no. 242, pp. 1–17. https://doi.org/10.1617/s11527-022-02079-4

    Article  CAS  Google Scholar 

  44. Qu, X., Fan, Z., Li, T., Hong, B., Zhang, Y., Wei, J., Wang, D., and Oeser, M., Constr. Build. Mater., 2021, vol. 311, ID 125241. https://doi.org/10.1016/j.conbuildmat.2021.125241

    Article  CAS  Google Scholar 

  45. Zakrzewski, A., Kosakowski, P., Waliczek, M., and Kowalski, A., Org. Geochem., 2020, vol. 145, ID 104037. https://doi.org/10.1016/j.orggeochem.2020.104037

    Article  CAS  Google Scholar 

  46. Grohmann, S., Fietz, S.W., Littke, R., Daher, S.B., Romero-Sarmiento, M.F., Nader, F.H., and Baudin, F., Oil Gas Sci. Technol., 2018, vol. 73, ID 49. https://doi.org/10.2516/ogst/2018036

    Article  Google Scholar 

  47. Sakib, N. and Bhasin, A., Int. J. Pavement Eng., 2019, vol. 20, no. 12, pp. 1371–1384. https://doi.org/10.1080/10298436.2018.1428972

    Article  CAS  Google Scholar 

  48. Sheikina, M.A., Tsentr. Nauchn. Vestn., 2018, vol. 3, no. 13, pp. 25–26. https://www.elibrary.ru/xtfeix

    Google Scholar 

  49. Wieclaw, D., Bilkiewicz, E., Kotarba, M.J., Lillis, P.G., Dziadzio, P.S., Kowalski, A., Kmiecik, N., Romanowski, T., and Jurek, K., Int. J. Earth Sci., 2020, vol. 109, pp. 63–99. https://doi.org/10.1007/s00531-019-01790-y

    Article  CAS  Google Scholar 

  50. Vale, M.G.R., Silva, M.M., Damin, I.C.F., Filho, P.J.S., and Welz, B., Talanta, 2008, vol. 74, pp. 1385–1391. https://doi.org/10.1016/j.talanta.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  51. Osli, L.N., Shalaby, M.R., Islam, M.A., Kalaitzidis, S., Damoulianou, M.E., Karim, N.K., Tsikouras, B., and Pasadakis, N., J. Petrol. Sci. Eng., 2022, vol. 208, ID 109503. https://doi.org/10.1016/j.petrol.2021.109503

    Article  CAS  Google Scholar 

  52. Wang, T., Wang, J., Hou, X., and Xiao, F., Road Mater. Pavement Des., 2019, vol. 22, no. 3, pp. 539–556. https://doi.org/10.1080/14680629.2019.1628803

    Article  CAS  Google Scholar 

  53. Wojewódka, D., Dyguła, P., Przyjazny, A., and Kamiński, M., Improved Conditions for Analysis of the Group Composition of Asphaltenes and Asphaltenes-Containing Materials by TLC as a Pilot Separation Technique and TLC-FID as a Quantitative Analysis Method with Stepwise Development of the Chromatogram, SSRN, 2022. https://doi.org/10.2139/ssrn.4169533

  54. Lacroix-Andrivet, O., Hubert-Roux, M., Siqueira, A.L.M., Bai, Y., and Afonso, C., Energy Fuels, 2020, vol. 34, no. 8, pp. 9296–9303. https://doi.org/10.1021/acs.energyfuels.0c00709

    Article  CAS  Google Scholar 

  55. Ferrer, F.M. and Bailey, J.V., J. Sep. Sci., 2021, vol. 44, pp. 3654–3664. https://doi.org/10.1002/jssc.202100337

    Article  CAS  Google Scholar 

  56. Mirwald, J., Werkovits, S., Camargo, I., Maschauer, D., Hofko, B., and Grothe, H., Constr. Build. Mater., 2020, vol. 250, ID 118809. https://doi.org/10.1016/j.conbuildmat.2020.118809

    Article  Google Scholar 

  57. van Herwerden, D., Pirok, B.W.J., and Schoenmakers, P.J., in Analytical Techniques in the Oil and Gas Industry for Environmental Monitoring, Dunkle, M.N. and Winniford, W.L., Eds., Hoboken: Wiley, 2020. https://doi.org/10.1002/9781119523314.ch5

    Google Scholar 

  58. Bissada, K.K., Tan, J., Szymczyk, E., Darnell, M., and Mei, M., Org. Geochem., 2016, vol. 95, pp. 21–28. https://doi.org/10.1016/j.orggeochem.2016.02.007

    Article  ADS  CAS  Google Scholar 

  59. Karevan, A., Zirrahi, M., and Hassanzadeh, N., ACS Omega, 2022, vol. 7, pp. 18897−18903. https://doi.org/10.1021/acsomega.2c01880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yerabolu, R., Kotha, R.R., Niyonsaba, E., Dong, X., Manheim, J.M., Kong, J., Riedeman, J.S., Romanczyk, M., Johnston, C.T., Kilaz, G., and Kenttamaa, H.I., Fuel, 2018, vol. 234, pp. 492–501. https://doi.org/10.1016/j.fuel.2018.07.028

    Article  CAS  Google Scholar 

  61. Qian, K., Energy Fuels, 2021, vol. 35, no. 22, pp. 18008–18018. https://doi.org/10.1021/acs.energyfuels.1c01783

    Article  CAS  Google Scholar 

  62. Borisov, R.S., Kulikova, L.N., and Zaikin, V.G., Petrol. Chem., 2019, vol. 59, no. 10, pp. 1055–1076. https://doi.org/10.1134/S0965544119100025

    Article  CAS  Google Scholar 

  63. Manaure, D.A., Fakhreeva, A.V., Voloshin, A.I., Gusakov, V.N., Yakubova, S.G., and Dokichev, V.A., Bashk. Khim. Zh., 2019, vol. 26, no. 2, pp. 55–60. https://www.elibrary.ru/bancts.

    CAS  Google Scholar 

  64. Oliviero, C., Caputo, P., De Luca, G., Maiuolo, L., Eskandarsefat, Sh., and Sangiorgi, C., Appl. Sci., 2018, vol. 8, no. 2, ID 229. https://doi.org/10.3390/app8020229

    Article  CAS  Google Scholar 

  65. Volkov, V.Ya., Sakharov, B.V., Khasanova, N.M., and Nurgaliev, D.K., Georesources, 2018, vol. 20, no. 4, pp. 308–323. https://doi.org/10.18599/grs.2018.4.308-323].

    Article  CAS  Google Scholar 

  66. Volkov, V.Y., Al-Muntaser, A.A., Varfolomeev, M.A., Khasanova, N.M., Sakharov, B.V., Suwaid, M.A., Djimasbe, R., Galeev, R.I., and Nurgaliev, D.K., J. Petrol. Sci. Eng., 2021, vol. 196. ID 107990. https://doi.org/10.1016/j.petrol.2020.107990

    Article  Google Scholar 

  67. Shumskaite, M.I., Burukhina, A.I., Chernova, E.S., Glinskikh, V.N., and Fursenko, E.A., Geofiz. Tekhnol., 2019, no. 3, pp. 13–21. https://doi.org/10.18303/2619-1563-2019-3-13

    Article  Google Scholar 

  68. Samie, M.S. and Mortaheb, H.R., Fuel, 2021, vol. 305, ID 121609. https://doi.org/10.1016/j.fuel.2021.121609

    Article  CAS  Google Scholar 

  69. Mohammadi, M., Khorrami, M.K., Vatani, A., Ghasemzadeh, H., Vatanparast, H., Bahramian, A., and Fallah, A., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2021, vol. 245, ID 18945. https://doi.org/10.1016/j.saa.2020.118945

    Article  ADS  CAS  Google Scholar 

  70. Ahmadinouri, F., Parvin, P., and Rabbani, A.R., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2023, vol. 304, ID 123314. https://doi.org/10.1016/j.saa.2023.123314

    Article  CAS  Google Scholar 

  71. Analiticheskaya khimiya (Analytical Chemistry), Ishchenko, A.A., Ed., Moscow: Fizmatlit, 2019.

  72. Christian, G.D., Analytical Chemistry, New York: Wiley, 2007.

    Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Savonina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 434–458, August, 2023 https://doi.org/10.31857/S0044461823050018

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savonina, E.Y., Panyukova, D.I. State of the Art and Prospects for the Development of Methods for Determining the Group Hydrocarbon Composition (SARA Composition) of Crude Oil and Petroleum Products. Russ J Appl Chem 96, 503–524 (2023). https://doi.org/10.1134/S1070427223050014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223050014

Keywords:

Navigation