Skip to main content
Log in

Temperature Modes and Mechanical Stresses in Photovoltaic Converters of Concentrated Sunlight

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In photovoltaic converters of concentrated sunlight, the thermal flow is directed from the photoactive region (p–n junction) to a heat-spreading basement through the substrate. The heat sink transfers the excess thermal to the environment by convection or cooled by a liquid carrier. Reducing the thickness of the substrate makes it possible to reduce the thermal resistance of the crystal and lower the operating temperature of the photoactive region. However, in this case, the mechanical stresses in it increase. This work discusses the balance between the mechanical strength of the sample and the decrease in its operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. V. Chekalin, A. V. Andreeva, N. Yu. Daviduk, N. S. Potapovich, N. A. Sadchikov, V. M. Andreev, D. A. Malevsky. ZhTF, 91 (6), 915 (2021) (in Russian). https://doi.org/10.21883/JTF.2021.06.50859.314-20

  2. M. Steiner, A. Bosch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, A.W. Bett. Prog. Photovolt: Res. Appl., 23 (10),1323 (2014). https://doi.org/10.1002/pip.2568

    Article  Google Scholar 

  3. N. A. Pakhanov, V. M. Andreev, M. Z. Shvarts, O. P. Pchelyakov. Optoelectronics, Instrumentation and Data Processing, 54, 187 (2018).https://doi.org/10.3103/S8756699018020115

  4. J. F. Geisz, R. M. France, K. L. Schulte, M. A. Steiner, A. G. Norman, H. L. Guthrey, M. R. Young, T. Song, T. Moriarty. Nature Energy, 5, 326 (2020).https://doi.org/10.1038/s41560-020-0598-5

  5. X. Zhang, J. Hu, Y. Wu, F. Lu. J. Phys. D: Appl. Phys., 42, 145401 (2009). https://doi.org/10.1088/0022-3727/42/14/145401

  6. N. Yu. Daviduk, A. V. Andreeva, D. A. Malevsky, P. V. Pokrovsky, N. A. Sadchikov, A. V. Chekalin, V. M. Andreev. Tech. Phys. Lett., 46, 436 (2020).https://doi.org/10.1134/S1063785020050041

    Article  ADS  CAS  Google Scholar 

  7. L. D. Landau, E.M. Lifshitz. Theory of Elasticity (3rd ed.) (Elsevier, 1986), v. 7, Ch. V, p. 152. https://doi.org/10.1063/1.3057037

    Book  Google Scholar 

  8. A. V. Andreeva, N. Yu. Daviduk, D. A. Malevsky, A.N. Panchak, N. A. Sadchikov, A. V. Chekalin. FTP, 52, 3 (2018) (in Russian).https://doi.org/10.21883/JTF.2021.02.50365.155-20

  9. G. Peharz, J. P. F. Rodr´ıguez, G. Siefer, A.W. Bett. Prog. Photovolt: Res. Appl., 19, 54 (2011).https://doi.org/10.1002/pip.987

  10. A. S. Okhotin, A. S. Pushkarskii, V. V. Gorbachev. Thermophysical Properties of Semiconductors (Atom, Publ. House, M., 1972).

  11. J. S. Blakemore. J. Appl. Phys., 53 (10), 123 (1982). https://doi.org/10.1063/1.331665

    Article  ADS  Google Scholar 

  12. M. White, J. Gran, N. Tomlin, J. Lehman. Metrologia, 51, S245 (2014). https://doi.org/10.1088/0026-1394/51/6/S245

    Article  ADS  Google Scholar 

  13. G. A. Slack, R. A. Tanzilli, R. O. Pohl, J. W. Vandersande. J. Phys. Chem. Sol., 48 (7), 641 (1987). https://doi.org/10.1016/0022-3697(87)90153-3

    Article  ADS  CAS  Google Scholar 

  14. M. Bukhari, M. S. J. Hashmi, D. Brabazon. In The 2nd International MalaysiaIreland Joint Symposium on Engineering, Science and Business (IMiEJS), 2012 At: Putra World Trade Centre, Kuala Lumpur, Malaysia.

  15. E. Ranjbarnodeh, S. Serajzadeh, A.H. Kokabi, A. Fischer. J. Mater. Sci., 46, 3225 (2011). https://doi.org/10.1007/s10853-010-5207-8

    Article  ADS  CAS  Google Scholar 

  16. W. Martienssen, H. Warlimont Springer handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005), p. 431. https://doi.org/10.1007/3-540-30437-1

    Book  Google Scholar 

  17. S. I. Novikova. Sov. Phys. Sol. State, 2 (1),37 (1960).

    Google Scholar 

  18. S. I. Novikova. Sov. Phys. Sol. State, 3 (1),129 (1961).

    Google Scholar 

  19. D. Minakov, P. Levashov. Phys. Rev. B., 92, 224102 (2015). https://doi.org/10.1103/PhysRevB.92.224102

  20. G. A. Slack, S. F. Bartram. J. Appl. Phys., 46 (1), 89 (1975). https://doi.org/10.1063/1.321373

    Article  ADS  CAS  Google Scholar 

  21. L. Del Castillo, D. Schatzel, C. Weber, T. Hatake, M. Mojarradi, E. A. Kolawa. In Proc. 4th Int. Planetary Probe Workshop, (2006).

  22. G. Sun, Z. Chen, Z. Liu. J. Mater. in Civil Engineer., 23, 1017, (2011). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000271

    Article  CAS  Google Scholar 

  23. Y. Wang, J. J. Wang, W. Y. Wang, Z. Mei, S. Shang, L. Chen, Z. Liu. J. Physics-Condensed Matter, 22, 202201 (2010). https://doi.org/10.1088/0953-8984/22/20/202201

  24. L. D. Landau, E. M. Lifshitz. Theory of Elasticity (3rd ed.) (Elsevier, 1986), v. 7, Ch. I, p. 2. https://doi.org/10.1063/1.3057037

    Book  Google Scholar 

  25. R. M. Jones. Deformation Theory of Plasticity (Bull Ridge Corporation, 2009), Section 4.5.6, p. 151. ISBN: 978-0-9787223-1-9.

  26. Y. Deng, S. Tang, D. Tung. 2018 IEEE International Conference on Applied System Invention (ICASI), (Chiba, Japan, 2018), p. 1149-1151. https://doi.org/10.1109/ICASI.2018.8394487

  27. M. Vajdi, F. Moghanlou, F. Sharifian Jazi, M. Shahedi Asl, M. Shokouhimehr. J. Composites and Compounds, 2 (2), 35 (2020). https://doi.org/10.29252/jcc.2.1.5

    Article  Google Scholar 

  28. Yu. V. Milman, I. V. Gridneva, A. A. Golubenk. Sci. Sinter., 39, 67 (2007). https://doi.org/10.2298/SOS0701067M

    Article  CAS  Google Scholar 

  29. I. Yonenaga, K. Sumino. J. Appl. Phys., 71, 4249 (1992). https://doi.org/10.1063/1.350805

    Article  ADS  CAS  Google Scholar 

  30. C. Algora, I. Rey-Stolle. Handbook of Concentrator Photovoltaic Technology (Willey, United Kingdom, 2016), p. 264. https://doi.org/10.1002/9781118755655

    Book  Google Scholar 

  31. E. F. Fern’andez, G. Siefer, M. Schachtner, A. J. Garc’ıa Loureiro, P. P’erez-Higueras. AIP Conf. Proceed., 1477, 189 (2012). https://doi.org/10.1063/1.4753865

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was performed with financial support from the Ministry of Science and Higher Education of the Russian Federation under Agreement no. 075-15-2021-989 dated September 23, 2021. (Contract unique ID RF-225121X0054.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Panchak.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchak, A.N., Shvarts, M.Z. Temperature Modes and Mechanical Stresses in Photovoltaic Converters of Concentrated Sunlight. Tech. Phys. 68, 377–381 (2023). https://doi.org/10.1134/S1063784223900711

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900711

Keywords:

Navigation