Skip to main content
Log in

Dependence of the Electrochemical Parameters of Composite SiO/C Anodes for Lithium-Ion Batteries on the Composition and Synthesis Temperature

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of a study of anodes obtained by carbonization of silicon monoxide by means of a reaction with solid-phase fluorocarbon CF0.8 are presented. Charge/discharge voltage profiles were studied at different currents depending on the composition and temperature of the synthesis of composites. The irreversible losses of the 1st cycle and the contribution to them of intrinsic losses due to the formation of lithium oxide and its silicates and losses associated with the formation of SEI are analyzed. A difference has been established in the behavior of anodes made of SiO carbonized by annealing with CF0.8 at T = 800°C (SiO/C composite) and silicon monoxide annealed with CF0.8 at T > 1000°C at which disproportionate occurs simultaneously with the carbonization of SiO (d-SiO/C composite). The difference consisting in a higher discharge capacity, a higher Coulomb efficiency, and better rate capability of d-SiO/C is explained by a change in the composition of the SiOx matrix that occurs during the disproportionation process. The effect of the formation of d-SiO/C anodes by preliminary lithiation with a low current, after which the electrodes can be charged and discharged with much higher currents, has been discovered. The effect is explained by the amorphization of silicon crystallites and the increasing diffusion coefficient of lithium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. M. N. Obrovac, V. L. Chewier. Chem. Rev., 114, 11444 (2014). https://doi.org/10.1021/cr500207g

    Article  CAS  PubMed  Google Scholar 

  2. Zh. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, L. Mai. Chem. Soc. Rev., 48, 285 (2019). https://doi.org/10.1039/c8cs00441b

    Article  CAS  PubMed  Google Scholar 

  3. T. Chen, J. Wu, Q. Zhang, X. Su. J. Power Sources, 363, 126 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.073

    Article  ADS  CAS  Google Scholar 

  4. M. Jiao, Y. Wang, C. Ye, C. Wang, W. Zhang, C. Liang. J. Alloy. Compd., 842, 155774 (2020). https://doi.org/10.1016/j.jallcom.2020.155774

  5. J.-H. Kim, C.-M. Park, H. Kim, Y.-J. Kim, H.-J. Sohn. J. Electroanalyt. Chem., 661, 245 (2011). https://doi.org/10.1016/j.jelechem.2011.08.010

    Article  CAS  Google Scholar 

  6. S. C. Jung, H.-J. Kim, J.-H. Kim, Y.-K. Han. J. Phys. Chem. C., 120 (2), 886 (2016). https://doi.org/10.1021/acs.jpcc.5b10589

    Article  CAS  Google Scholar 

  7. Y. Nagao, H. Sakaguchi, H. Honda, T. Fukunaga, T. Esaka. J. Electrochem. Soc., 151 (10), A1572 (2004). https://doi.org/10.1149/1.1787173

    Article  CAS  Google Scholar 

  8. M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata. J. Electrochem. Soc., 152 (10), A2089 (2005). https://doi.org/10.1149/1.2013210

    Article  CAS  Google Scholar 

  9. K. Yasuda, Y. Kashitani, S. Kizaki, K. Takeshita, T. Fujita, S. Shimosaki. J. Power Sources, 329, 462 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.110

    Article  ADS  CAS  Google Scholar 

  10. L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, J. R. Dahna. Electrochem. Solid-State Lett., 4 (9), A137 (2001). https://doi.org/10.1149/1.1388178

    Article  CAS  Google Scholar 

  11. T. Kim, S. Park, S. M. Oh. J. Electrochem. Soc., 154, A1112 (2007). https://doi.org/10.1149/1.2790282

    Article  CAS  Google Scholar 

  12. Y. Yamada Y. Iriyama, T. Abe, Z. Ogumi. J. Electrochem. Soc., 157 (1), A26 (2010). https://doi.org/10.1149/1.3247598

    Article  CAS  Google Scholar 

  13. J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen, J. Sun. ACS Appl. Mater. Interfaces, 8 (44), 30239 (2016). https://doi.org/10.1021/acsami.6b10260

    Article  CAS  PubMed  Google Scholar 

  14. Q. Yuan, F. Zhao, Y. Zhao, Z. Liang, D. Yan. Electrochimica Acta, 115, 16 (2014). https://doi.org/10.1016/j.electacta.2013.10.106

    Article  CAS  Google Scholar 

  15. M. Yamada, A. Ueda, K. Matsumoto, T. Ohzuku. J. Electrochem. Soc., 158 (4), A417 (2011). https://doi.org/10.1149/1.3551539

    Article  CAS  Google Scholar 

  16. T. Xu, Q. Wang, J. Zhang, X. Xie, B. Xia. ACS Appl. Mater. Interfac., 11, 19959 (2019). https://doi.org/10.1021/acsami.9b03070

    Article  CAS  Google Scholar 

  17. L. Guo, H. He, Y. Ren, C. Wang, M. Li. Chem Eng. J., 335, 32 (2017). https://doi.org/10.1016/j.cej.2017.10.145

    Article  CAS  Google Scholar 

  18. L. Hu, W. Xia, R. Tang, R. Hu, L. Ouyang, T. Sun. H. Wang. Frontiers in Chem., 8, 388 (2020). https://doi.org/10.3389/fchem.2020.00388

    Article  ADS  CAS  Google Scholar 

  19. E. V. Astrova, V. P. Ulin, A. V. Parfeneva, V. B. Voronkov. Tech. Phys. Lett., 45, 664 (2019). https://doi.org/10.1134/S1063785019070022

    Article  ADS  CAS  Google Scholar 

  20. E. V. Astrova, V. P. Ulin, A. V. Parfeneva, A. M. Rumyantsev, V. B. Voronkov, A. V. Nashchekin, V. N. Nevedomskiy, Y. M. Koshtyal, M. V. Tomkovich. J. Alloy. Compd., 826, 154242 (2020). https://doi.org/10.1016/j.jallcom.2020.154242

  21. E. V. Astrova, V. P. Ulin, A. V. Parfeneva, A. V. Nashchekin, V. N. Nevedomskiy, M. V. Baydakova. Semiconductors, 54 (8), 900 (2020). https://doi.org/10.1134/S1063782620080059

    Article  ADS  CAS  Google Scholar 

  22. D. A. Lozhkina, E. V. Astrova, A. I. Likhachev, A. V. Parfeneva, A. M. Ryumyantsev, A. N. Smirnov, V. P. Ulin. Tech. Phys., 91 (9), 1381 (2021). https://doi.org/10.21883/JTF.2021.09.51218.83-21

    Article  Google Scholar 

  23. D. A. Lozhkina, E. V. Astrova, R. V. Sokolov, D. A. Kirilenko, A. A. Levin, A. V. Parfeneva, V. P. Ulin. Semiconductors, 55 (4), 373 (2021). https://doi.org/10.1134/S1063782621040096

    Article  ADS  Google Scholar 

  24. A. S. Fialkov. Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Aspekt Press, M., 1997), p. 377–404 (in Russian).

  25. M. Winter, P. Novak, A. Monnier. J. Electrochem. Soc., 145, 428 (1998). https://doi.org/10.1149/1.1838281

    Article  ADS  CAS  Google Scholar 

  26. T. Tan, P.-K. Lee, D. Y. W. Yu. J. Electrochem. Soc., 166 (3), A5210 (2019). https://doi.org/10.1149/2.0321903jes

    Article  CAS  Google Scholar 

  27. J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie, O. Yamamoto. Solid State Ionics, 152–153, 125 (2002). https://doi.org/10.1016/S0167-2738(02)00362-4

  28. Ch.-M. Park, W. Choi, Y. Hwa, J.-H. Kim, G. Jeong, H.-J. Sohn. J. Mater. Chem., 20, 4854 (2010). https://doi.org/10.1039/B923926J

    Article  CAS  Google Scholar 

  29. K. Kitada, O. Pecher, P. C. M. M. Magusin, M. F. Groh, R. S. Weatherup, C. P. Grey. J. Am. Chem. Soc., 141, 7014 (2019). https://doi.org/10.1021/jacs.9b01589

    Article  CAS  PubMed  Google Scholar 

  30. Z. B. Stojnov, B. M. Grafov, B. S. Savova-Stojnova, V. V. Elkin. Elektrokhimicheskij impedans (Nauka, M., 1991), p. 336 (in Russian).

  31. A. V. Churikov, K. I. Pridatko, A. V. Ivanishchev, I. A. Ivanishcheva, I. M. Gamayunova, K. V. Zapsis, V. O. Sycheva. Elektrokhimiya, 44 (5), 594 (2008) (in Russian). https://doi.org/10.1134/S1023193508050078

  32. M. Xia, L. Yi-ran, X. Xiong, W. Hu, Y. Tang, N. Zhou, Z. Zhou, H. Zhang. J. Alloy. Compnd., 800, 116e124 (2019). https://doi.org/10.1016/j.jallcom.2019.05.365

  33. F. Ozanam, M. Rosso. Mat. Sci. Eng., 213, 2 (2016). https://doi.org/10.1016/j.mseb.2016.04.016

    Article  CAS  Google Scholar 

  34. H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu, S. Zhang. J. Mech. Phys. Sol., 70, 349 (2014). https://doi.org/10.1016/j.jmps.2014.06.004

    Article  ADS  CAS  Google Scholar 

  35. S. Yoshida, T. Okubo, Y. Masuo, Y. Oba, D. Shibata, M. Haruta, T. Doi, M. Inaba. Electrochemistry, 85 (7), 403 (2017). https://doi.org/10.5796/electrochemistry.85.403

    Article  CAS  Google Scholar 

  36. M. Pharr, K. Zhao, X. Wang, Z. Suo, J.J. Vlassak. Nano Lett., 12 (9), 5039 (2012). https://doi.org/10.1021/nl302841y

    Article  ADS  CAS  PubMed  Google Scholar 

  37. J. Park, S. S. Park, Y. S. Won. Electrochim. Acta, 107, 467 (2013). https://doi.org/10.1016/j.electacta.2013.06.059

    Article  CAS  Google Scholar 

  38. K. Pan, F. Zou, M. Canova, Y. Zhu, J.-H. Kim. J. Power Sources, 413, 20 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.010

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to thank M.V. Tomkovich and Yu.A. Kukushkina for the performed BET studies and M.P. Karusheva for help with EIS measurements studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Lozhkina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozhkina, D.A., Astrova, E.V. & Rumyantsev, A.M. Dependence of the Electrochemical Parameters of Composite SiO/C Anodes for Lithium-Ion Batteries on the Composition and Synthesis Temperature. Tech. Phys. 68, 471–484 (2023). https://doi.org/10.1134/S1063784223900516

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900516

Keywords:

Navigation