Skip to main content
Log in

On the Problem of Acceleration of Fast Ignition Thermonuclear Targets with Two Cones

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The problems of acceleration of fast ignition thermonuclear targets with two cones for their high-precision injection into region near the center of the reactor chamber are considered and the possibility of solution of these problems is shown. A brief review of discussed variants of such targets and of their main advantages, related to ignition of microexplosion and simplicity of providing preservation of targets workability during their flight in the reactor chamber, is presented. Fast ignition by microexplosion of two-sided cone target and the method to estimate acceptable speed of stabilizing rotation of thermonuclear target are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. J. J. Duderstadt, G.A. Moses. Inertial Confinement Fusion (John Wiley and Sons, NY, 1982).

    Google Scholar 

  2. W. R. Meier. Fusion Eng. Des., 25 (1-3), 145 (1994). https://doi.org/10.1016/0920-3796(94)90060-4

  3. M. M. Basko, S. Yu. Guskov, A. N. Didenko, A. V. Zabrodin, V. S. Imshennik, D. G. Koshkarev, M. V. Maslennikov, S. A. Medin, S. L. Nedoseev, Yu. N. Orlov, V. P. Smirnov, V. I. Subbotin, L. P. Feoktistov, V. V. Kharitonov, M. D. Churazov, B. Yu. Sharkov. Y-aderniy sintez s inertsionnym uderzhaniem. Sovremennoe sostoyanie i perspektivy dlya energetiki, pod red. B.Yu. Sharkova (Fizmatlit, M., 2005) (in Russian).

  4. W. R. Meier, W. J. Hogan. Fusion Sci. Technol., 49 (3), 532 (2006). https://doi.org/10.13182/FST06-A1165

    Article  ADS  CAS  Google Scholar 

  5. T. Goto, Y. Someya, Y. Ogawa, R. Hiwatari, Y. Asaoka, K. Okano, A. Sunahara, T. Johzaki. Nucl. Fusion, 49 (7), 075006 (2009). https://doi.org/10.1088/0029-5515/49/075006

  6. National Research Council. An Assessment of the Prospects for Inertial Fusion Energy (The National Academies Press, Washington, D.C., 2013). https://doi.org/10.17226/18289

    Book  Google Scholar 

  7. W. R. Meier, A. M. Dunne, K. J. Kramer, S. Reyes, T. M. Anklam, the LIFE Team. Fusion Eng. Des., 89, 2489 (2014). https://doi.org/10.1016/j.fusengdes.2013.12.021

    Article  CAS  Google Scholar 

  8. A. R. Paramo, F. Sordo, D. G. Gomez, B. J. Le Garrec, J. M. Perlado, A. Rivera. Nucl. Fusion, 54 (12), 123019 (2014). https://doi.org/10.1088/0029-5515/54/12/123019

  9. Y. Mori, Y. Nishimura, K. Ishii, R. Hanayama, Y. Kitagawa, T. Sekine, Y. Takeuchi, N. Satoh, T. Kurita, Y. Kato, N. Rurita, T. Kawashima, O. Komeda, T. Hioki, T. Motohiro, A. Sunahara, Y. Sentoku, E. Miura, A. Iwamoto, H. Sakagami. Fusion Sci. Technol., 75 (1), 36 (2019). https://doi.org/10.1080/15361055.2018.1499393

    Article  ADS  Google Scholar 

  10. R.W. Petzoldt. Inertial Fusion Energy. Target Injection, Tracking, and Beam Pointing (Ph.D. Thesis). UCRL-LR-120192 (Livermore, 1995).

  11. R.W. Petzoldt, R.W. Moir. Fusion Eng. Des., 32-33, 113 (1996). https://doi.org/10.1016/S0920-3796(96)00458-9

    Article  CAS  Google Scholar 

  12. D. T. Goodin, N. B. Alexander, C. R. Gibson, A. Nobile, R. W. Petzoldt, N. S. Siegel, L. Thompson. Nucl. Fusion, 41 (5), 527 (2001). https://doi.org/10.1088/0029-5515/41/5/306

    Article  ADS  CAS  Google Scholar 

  13. K. R. Schultz, D. T. Goodin, A. Nobile, Jr. Nucl. Instrum. Meth. A, 464, 109 (2001).https://doi.org/10.1016/S0168-9002(01)00016-X

  14. M. L. Shmatov, R. W. Petzoldt, E. I. Valmianski. Fusion Sci. Technol., 43 (3), 312 (2003). https://doi.org/10.13182/FST03-A272

    Article  ADS  CAS  Google Scholar 

  15. E. I. Valmianski, R. W. Petzoldt, N. B. Alexander. Fusion Sci. Technol., 43 (3), 334 (2003). https://doi.org/10.13182/FST03-A275

    Article  ADS  CAS  Google Scholar 

  16. T. Norimatsu, D. Harding, R. Stephens, A. Nikroo, R. Petzoldt, H. Yoshida, K. Nagai, Y. Izawa. Fusion Sci. Technol., 49 (3), 483 (2006). https://doi.org/10.13182/FST06-A1162

    Article  ADS  CAS  Google Scholar 

  17. T. Kassai, R. Tsui. J. Phys. Conf. Ser., 112, 032047 (2008). https://doi.org/10.1088/1742-6596/112/032047

  18. L. Carlson, M. Tillack, J. Stromsoe, N. Alexander, D. Goodin, R. Petzoldt. Fusion Sci. Technol., 56 (1), 409 (2009). https://doi.org/10.13182/FST09-A8936

    Article  ADS  CAS  Google Scholar 

  19. National Research Concil. Assesment of Inertial Confinement Fusion Targets (The National Academ. Press, Washington, D.C., 2013).

    Google Scholar 

  20. E. R. Koresheva, I. V. Aleksandrova, O. M. Ivanenko, V. A. Kalabukhov, E. L. Koshelev, A. I. Kupriashin, K. V. Mitsen, M. Klenov, I. E. Osipov, L. V. Panina. J. Russ. Laser Res., 35 (2), 151 (2014). https://doi.org/10.1007/s10946-018-9700-x

    Article  CAS  Google Scholar 

  21. I. Aleksandrova, E. Koshelev, E. Koresheva. Appl. Sci., 10, 686 (2020). https://doi.org/10.3390/app10020686

    Article  CAS  Google Scholar 

  22. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, R.J. Mason. Phys. Plasmas, 1, 1626 (1994). https://doi.org/10.1063/1.870664

    Article  ADS  CAS  Google Scholar 

  23. V. A. Shcherbakov. Sov. J. Plasma Phys., 9, 240 (1983).

    Google Scholar 

  24. L. J. Pekins, R. Betti, K. N. LaFortune, W. H. Williams. Phys. Rev. Lett., 103, 045004 (2009). https://doi.org/10.1103/PhysRevLett.103.045004

  25. S. Yu. Gus’kov, N. N. Demchenko, N. V. Zmitrenko, P. A. Kuchugov, R. A. Yakhin. JETP, 130, 748 (2020). https://doi.org/10.1134/S1063776120030140

    Article  ADS  Google Scholar 

  26. S. A. Bel’kov, S. V. Bondarenko, S. G. Garanin, S.Yu. Gus’kov, N. N. Demchenko, N. V. Zmitrenko, P. A. Kuchugov, R. V. Stepanov, V. A. Shcherbakov, R. A. Yakhin. JETP, 131, 636 (2020). https://doi.org/10.1134/S1063776120090149

    Article  ADS  Google Scholar 

  27. S. Atzeni, M. Tabak. Plasma Phys. Contr. Fusion, 47, B769 (2005). https://doi.org/10.1088/0741-3335/47/12B/S58

    Article  Google Scholar 

  28. M. Tabak, D. Hinkel, S. Atzeni, E.M. Campbell, K. Tanaka. Fusion Sci. Technol., 49 (3), 254 (2006). https://doi.org/10.13182/FST49-3-254

    Article  ADS  CAS  Google Scholar 

  29. S. P. Hatchett, D. Clark, M. Tabak, R. E. Turner, C. Stoeckl, R. B. Stephens, H. Shiraga, K. Tanaka. Fusion Sci. Technol., 49 (3), 327 (2006). https://doi.org/10.13182/FST06-A1152

    Article  ADS  CAS  Google Scholar 

  30. M. Temporal, R. Ramis, J. J. Honrubia, S. Atzeni. Plasma Phys. Contr. Fusion, 51, 035010 (2009). https://doi.org/10.1088/0741-3335/51/3/035010

  31. M. L. Shmatov. JBIS, 62 (6), 219 (2009).

    ADS  Google Scholar 

  32. L. P. Feoktistov. V sb.: Buduschee nauki (Znanie, M., 1985), vyp. 18, s. 168–198. (in Russian).

  33. S. Yu. Gus’kov. Quantum Electronics, 31 (10), 885 (2001).

    Article  ADS  Google Scholar 

  34. S.Yu. Gus’kov. Plasma Phys. Rep., 39, 1 (2013). https://doi.org/10.1134/S1063780X13010017

    Article  ADS  CAS  Google Scholar 

  35. S. Atzeni, M. Temporal, J. J. Honrubia. Nucl. Fusion, 42 (3), L1 (2002). https://doi.org/10.1088/0029-5515/42/3/101

    Article  ADS  CAS  Google Scholar 

  36. M. L. Shmatov. Fusion Sci. Technol., 43 (3), 456 (2003). https://doi.org/10.13182/FST03-A291

    Article  ADS  CAS  Google Scholar 

  37. M. L. Shmatov. Laser Part. Beams, 29, 339 (2011). https://doi.org/10.1017/S0263034611000425

    Article  ADS  CAS  Google Scholar 

  38. G. Velarde, O. Cabellos, M. J. Caturla, R. Florido, J. M. Gil, P. T. Leon, R. Mancini, J. Marian, P. Martel, J. M. Martinez-Val, E. Minguez, F. Mota, F. Ogando, J. M. Perlado, M. Piera, S. Reyes, R. Rodriguez, J. G. Rubiano, M. Salvador, J. Sanz, P. Sauvan, M. Velarde, P. Velarde. Report UCRL-CONF-208155 (LLN-L, Livermore, 2004).

  39. M.L. Shmatov, M. Kalal. Fusion Sci. Technol., 61 (3), 248 (2012). https://doi.org/10.13182/FST12-A13538

    Article  ADS  CAS  Google Scholar 

  40. M.L. Shmatov. In: Pathways to Energy from Inertial Fusion: An Integrated Approach. IAEA-TECDOC-1704 (IAEA, Vienna, 2013), p. 127.

  41. S. Hain, P. Mulser. Phys. Rev. Lett., 86 (6), 1015 (2001).https://doi.org/10.1103/PhysRevLett.86.1015

  42. J. M. Martinez-Val, S. Eliezer, M. Piera, P. M. Velarde. AIP Conf. Proc., 406, 208 (1997). https://doi.org/10.1063/1.53520

  43. B. J. Albright, M. J. Schmitt, J. C. Fernandez, G. E. Cragg, I. Tregillis, L. Yin, B. M. Hegelich. J. Phys. Conf. Ser., 112, 022029 (2008). https://doi.org/10.1088/1742-6596/112/2/022029

  44. J. C. Fernandez, B. A. Albright, K. A. Flippo, B. M. Hegelich, T. J. Kwan, M. J. Schmitt, L. Yin. J. Phys. Conf. Ser., 112, 022051 (2008). https://doi.org/10.1088/1742-6596/112/2/022051

  45. N. G. Basov, I. G. Lebo, V. B. Rozanov, V. F. Tishkin, L. P. Feok- tistov. Quant. Electron., 28 (4), 316 (1998). https://doi.org/10.1070/QE1998v028n04ABEH001219

    Article  ADS  Google Scholar 

  46. I. G. Lebo, E. A. Isaev, A. I. Lebo. Quant. Electron., 47 (2), 106 (2017). https://doi.org/10.1070/QEL16277

    Article  ADS  CAS  Google Scholar 

  47. G. V. Dolgoleva, I. G. Lebo. Quant. Electron., 49 (8), 796 (2019). https://doi.org/10.1070/QEL16953

    Article  ADS  CAS  Google Scholar 

  48. J. Zhang, W. M. Wang, X. H. Yang, D. Wu, Y. Y. Ma, J. L. Jiao, Z. Zhang, F. Y. Wu, X. H. Yuan, Y. T. Li, J. Q. Zhu. Phil. Trans. R. Soc. A, 378, 20200015 (2020). https://doi.org/10.1098/rsta.2020.0015

  49. R. B. Stephens, M. Key, W. Meier, R. Moir, M. Tabak. Report UCRLJC-135800 (LLNL, Livermore, 1999).

  50. S. E. Bodner, D. G. Colombant, A. J. Schmitt, M. Klapish. Phys. Plasmas, 7 (6), 2298 (2000). https://doi.org/10.1063/1.874063

    Article  ADS  CAS  Google Scholar 

  51. T. Norimatsu, K. Nagai, T. Takeda, T. Yamanaka. Proc. 2nd Inertial Fusion Sciences and Applications 2001 (Kyoto, Japan, 2001). Eds. K.A. Tanaka, D.D. Meyerhofer, J. Meyer-ter-Vehn (Elsevier, Paris, 2002), p. 752.

  52. E.H. Stephens, A. Nikroo, D.T. Goodin, R.W. Petzoldt. Fusion Sci. Technol., 43 (3), 346 (2003). https://doi.org/10.13182/FST43-346

    Article  ADS  CAS  Google Scholar 

  53. I. G. Lebo, I. V. Popov, V. B. Rozanov, V. F. Tishkin. Quant. Electron., 25 (12), 1220 (1995).https://doi.org/10.1070/QE1995v025n12ABEH000570

  54. Text Book on the Theory of the Motion of Projectiles; the History, Manufacture, and Explosive Force of Gunpowder; the History of Small Arms; the Method of Conducting Experiments; and on Ranges (H. M. Stationery Office, London, 1863).

  55. V. Fedorov. Evolyutsiya strelkovogo oruzhiya (Voenizdat, M., 1938), ch. I. (in Russian).

  56. P. V. Kryukov. Int. J. Impact Eng., 23, 501 (1999).https://doi.org/10.1016/S0734-743X(99)00099-8

  57. S. R. Nagel, S. W. Haan, J. R. Rygg, M. Barrios, L. R. Benedetti, D. K. Bradley, J. E. Field, B. A. Hammel, N. Izumi, O. S. Jones, S. F. Khan, T. Ma, A. E. Pak, R. Tommasini, R. P. Town. Phys. Plasmas, 22 (2), 022704 (2015). https://doi.org/10.1063/1.4907179

  58. D. S. Clark, C. R. Weber, D. C. Eder, S. W. Haan, B. A. Hammel, D. E. Hinkel, O. S. Jones, A. L. Kritcher, M. M. Marinak, J. L. Milovich, P. K. Patel, H. F. Robey, J. D. Salmonson, S. P. Sepke. J. Phys. Conf. Ser., 717, 012011 (2016). https://doi.org/10.1088/1742-6596/717/1/012011

  59. J. E. Ralph, T. Doppner, D. E. Hinkel, O. Hurricane, O. Landen, V. Smalyuk, C. R. Weber, J. Bigelow, B. Bachmann, D. T. Casey, D. Clark, S. Diaz, S. Felker, B. A. Hammel, S. F. Khan, A. Nikroo, A. Pak, P. K. Patel, D. A. Callahan, J. Sater, P. Springer, M. Stadermann, C. Walters, M. Havre, P. L. Volegov. Phys. Plasmas, 27 (10), 102708 (2020). https://doi.org/10.1063/5.0017931

  60. S. W. Haan, D. A. Callahan, M. J. Edwards, B. A. Hammel, D. D. Ho, O. S. Jones, J. D. Lindl, B. J. Mac Gowan, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, L. J. Sutter. Fusion Sci. Technol., 55 (3), 227 (2009). https://doi.org/10.13182/FST08-3501

    Article  ADS  CAS  Google Scholar 

  61. P. A. Gusak, A. M. Rogachev. Nachalnaya voennaya podgotovka (spravochnoe posobie voenruka) (Narodnaya Asveta, Minsk, 1975), 2-e izd., dop. i pererab. (in Russian).

  62. L. D. Landau, E. M. Lifshits. Mekhanika (Teoreticheskaya fizika. T I) (Nauka, M., 1973), 3-e izd., pererab. i dop. (in Russian).

  63. Kumulyativniy snaryad. Sovetskaya voennaya entsiklopediya (Voenizdat, M., 1977), t. 4, s. 525. (in Russian).

Download references

ACKNOWLEDGMENTS

The author would like to thank A.G. Zabrodsky for helpful discussion of the article, Dr. J. Pasley for information on several papers used in its writing, the anonymous reviewers for helpful comments on its initial versions, and the International Atomic Energy Agency for partial funding of the work on the subject of the article under IAEA Research Contract no. 24088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Shmatov.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmatov, M.L. On the Problem of Acceleration of Fast Ignition Thermonuclear Targets with Two Cones. Tech. Phys. 68, 386–394 (2023). https://doi.org/10.1134/S1063784223900759

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223900759

Keywords:

Navigation