Skip to main content
Log in

Controllable synthesis of porous N-doped carbons using aniline and Pluronic F127 micellar system for hydrogen storage and electrochemical applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Despite hydrogen being an attractive energy source, there are two challenges to overcome in its use: hydrogen storage and the use of catalysts to optimize its conversion into energy. N-doped carbons are considered promising candidates for hydrogen storage and catalysis. This paper reports a fast and controllable strategy for obtaining porous N-doped carbons with a monolith-type morphology, high surface area, and hierarchical porosity. The presence of nitrogen increases the electron donor and wettability of carbons, making them favorable for use in hydrogen adsorption and electrodes. The method is based on using aniline as a carbon source and polymerizing it in a Pluronic F127 micellar system before carbonization. It is shown that the pore size and pore volume of porous carbon can be effectively tuned by using tetraethyl orthosilicate (TEOS). The relationship between aniline polymerization conditions, surface chemistry, and porous carbon properties has been investigated. Polyaniline permitted a high conversion to carbon (43.5–98.1%) and a nitrogen content of 5% wt in the N-doped carbon. In addition to the well-developed porosity and interesting monolithic morphology, electrochemical characterization showed that increasing the temperature of carbon synthesis improved the electroactive performance due to higher graphitization. In our previous study on hydrogen diffusion, we observed higher rates in our material compared to other carbon materials. This enhanced performance can be attributed to the effective combination of doping and hierarchical porosity, facilitating improved charge transfer and establishing favorable diffusion pathways. Thus, we demonstrate that pore size and surface area impact the electrochemical properties and hydrogen diffusion in this type of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Hai, K. Hikmat Hama Aziz, J. Zhou, H.A. Dhahad, K. Sharma, S. Fahad Almojil, A. Ibrahim Almohana, A. Fahmi Alali, T. Ismail Kh, S. Mehrez, A. Abdelrahman, Neural network-based optimization of hydrogen fuel production energy system with proton exchange electrolyzer supported nanomaterial. Fuel. 332, 125827 (2023). https://doi.org/10.1016/j.fuel.2022.125827

    Article  CAS  Google Scholar 

  2. D. Çalışır, S. Ekici, A. Midilli, T.H. Karakoc, Benchmarking environmental impacts of power groups used in a designed UAV: hybrid hydrogen fuel cell system versus lithium-polymer battery drive system. Energy 262, 125543 (2023). https://doi.org/10.1016/j.energy.2022.125543

    Article  CAS  Google Scholar 

  3. I.A. Hassan, H.S. Ramadan, M.A. Saleh, D. Hissel, Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives. Renew. Sustain. Energy Rev. 149, 111311 (2021). https://doi.org/10.1016/j.rser.2021.111311

    Article  CAS  Google Scholar 

  4. H.V. Thanh, S. Ebrahimnia Taremsari, B. Ranjbar, H. Mashhadimoslem, E. Rahimi, M. Rahimi, A. Elkamel, Hydrogen storage on porous carbon adsorbents: rediscovery by nature-derived algorithms in random forest machine learning model. Energies (2023). https://doi.org/10.3390/en16052348

    Article  Google Scholar 

  5. J.L. Figueiredo, Nanostructured porous carbons for electrochemical energy conversion and storage. Surf. Coat. Technol. 350, 307–312 (2018). https://doi.org/10.1016/j.surfcoat.2018.07.033

    Article  CAS  Google Scholar 

  6. L. Guan, H. Hu, X. Teng, Y. Zhu, Y. Zhang, H. Chao, H. Yang, X. Wang, M. Wu, Templating synthesis of porous carbons for energy-related applications: a review. New Carbon Mater. 37, 25–45 (2022). https://doi.org/10.1016/S1872-5805(22)60574-2

    Article  CAS  Google Scholar 

  7. D.P. Broom, M. Hirscher, Irreproducibility in hydrogen storage material research. Energy Environ. Sci. 9, 3368–3380 (2016). https://doi.org/10.1039/C6EE01435F

    Article  CAS  Google Scholar 

  8. W. Kiciński, S. Dyjak, Transition metal impurities in carbon-based materials: pitfalls, artifacts and deleterious effects. Carbon N. Y. 168, 748–845 (2020). https://doi.org/10.1016/j.carbon.2020.06.004

    Article  CAS  Google Scholar 

  9. M. Mohan, V.K. Sharma, E.A. Kumar, V. Gayathri, Hydrogen storage in carbon materials—a review. Energy Storage 1, e35 (2019). https://doi.org/10.1002/est2.35

    Article  CAS  Google Scholar 

  10. Y. Xia, Z. Yang, Y. Zhu, Porous carbon-based materials for hydrogen storage: advancement and challenges. J. Mater. Chem. A 1, 9365–9381 (2013). https://doi.org/10.1039/C3TA10583K

    Article  CAS  Google Scholar 

  11. L. Xie, Z. Jin, Z. Dai, Y. Chang, X. Jiang, H. Wang, Porous carbons synthesized by templating approach from fluid precursors and their applications in environment and energy storage: a review. Carbon N. Y. 170, 100–118 (2020). https://doi.org/10.1016/j.carbon.2020.07.034

    Article  CAS  Google Scholar 

  12. J. Shi, N. Yan, H. Cui, J. Xu, Y. Liu, S. Zhang, Salt template synthesis of nitrogen and sulfur co-doped porous carbons as CO2 adsorbents. ACS Sustain. Chem. Eng. 7, 19513–19521 (2019). https://doi.org/10.1021/acssuschemeng.9b04574

    Article  CAS  Google Scholar 

  13. X. Gao, S. Yang, L. Hu, S. Cai, L. Wu, S. Kawi, Carbonaceous materials as adsorbents for CO2 capture: synthesis and modification. Carbon Capture Sci. Technol. 3, 100039 (2022). https://doi.org/10.1016/j.ccst.2022.100039

    Article  CAS  Google Scholar 

  14. S. Pérez-Rodríguez, D. Torres, M.J. Lázaro, Effect of oxygen and structural properties on the electrical conductivity of powders of nanostructured carbon materials. Powder Technol. 340, 380–388 (2018). https://doi.org/10.1016/j.powtec.2018.09.038

    Article  CAS  Google Scholar 

  15. E. Fuente, J.A. Menéndez, D. Suárez, M.A. Montes-Morán, Basic surface oxides on carbon materials: a global view. Langmuir 19, 3505–3511 (2003). https://doi.org/10.1021/la026778a

    Article  CAS  Google Scholar 

  16. J. Liu, L. Wei, H. Wang, G. Lan, H. Yang, J. Shen, In-situ synthesis of heteroatom co-doped mesoporous dominated carbons as efficient electrocatalysts for oxygen reduction reaction. Electrochim. Acta. 364, 137335 (2020). https://doi.org/10.1016/j.electacta.2020.137335

    Article  CAS  Google Scholar 

  17. X. Ning, W. Zhong, S. Li, Y. Wang, W. Yang, High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J. Mater. Chem. A 2, 8859 (2014)

    Article  CAS  Google Scholar 

  18. J. Li, X. Chen, J. Gong, J. Zhu, E. Mijowska, Deep insight into the pore size distribution of N-doped porous carbon materials on electrochemical energy storage and CO2 sorption. Diam. Relat. Mater. 105, 107802 (2020). https://doi.org/10.1016/j.diamond.2020.107802

    Article  ADS  CAS  Google Scholar 

  19. I.K. Petrushenko, K.B. Petrushenko, Hydrogen physisorption on nitrogen-doped graphene and graphene-like boron nitride-carbon heterostructures: a DFT study. Surf. Interfaces 17, 100355 (2019). https://doi.org/10.1016/j.surfin.2019.100355

    Article  CAS  Google Scholar 

  20. R. Shi, K. Liu, B. Liu, H. Chen, X. Xu, Y. Ren, J. Qiu, Z. Zeng, L. Li, New insight into toluene adsorption mechanism of melamine urea-formaldehyde resin based porous carbon: experiment and theory calculation. Colloids Surf. A 632, 127600 (2022). https://doi.org/10.1016/j.colsurfa.2021.127600

    Article  CAS  Google Scholar 

  21. J. Shi, H. Cui, J. Xu, N. Yan, Carbon spheres synthesized from KHCO3 activation of glucose derived hydrochar with excellent CO2 capture capabilities at both low and high pressures. Sep. Purif. Technol. 294, 121193 (2022). https://doi.org/10.1016/j.seppur.2022.121193

    Article  CAS  Google Scholar 

  22. J. Shi, J. Xu, H. Cui, N. Yan, J. Zou, Y. Liu, S. You, Synthesis of highly porous N-doped hollow carbon nanospheres with a combined soft template-chemical activation method for CO2 capture. Energy 280, 128172 (2023). https://doi.org/10.1016/j.energy.2023.128172

    Article  CAS  Google Scholar 

  23. M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Nitrogen-doped carbon materials. Carbon N. Y. 132, 104–140 (2018). https://doi.org/10.1016/j.carbon.2018.02.024

    Article  CAS  Google Scholar 

  24. E. Bahn, L.A. Hoyos Giraldo, V. Kuznetsov, I. Calvo-Almazán, M. Zbiri, M.M. Koza, T.C. Hansen, P.F. Henry, A. Lapp, S. Pouget, M. Mesa, P. Fouquet, Ultra-fast diffusion of hydrogen in a novel mesoporous N-doped carbon. Carbon N. Y. 166, 307–315 (2020). https://doi.org/10.1016/j.carbon.2020.05.004

    Article  CAS  Google Scholar 

  25. D.B. Basha, S. Ahmed, A. Ahmed, M.A. Gondal, Recent advances on nitrogen doped porous carbon micro-supercapacitors: new directions for wearable electronics. J. Energy Storage 60, 106581 (2023). https://doi.org/10.1016/j.est.2022.106581

    Article  Google Scholar 

  26. J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010). https://doi.org/10.1126/science.1184126

    Article  ADS  CAS  PubMed  Google Scholar 

  27. J. Yang, B. Weng, Inverse emulsion polymerization for high molecular weight and electrically conducting polyanilines. Synth. Met. 159, 2249–2252 (2009). https://doi.org/10.1016/j.synthmet.2009.07.045

    Article  CAS  Google Scholar 

  28. F. Yılmaz, Z. Küçükyavuz, Solution properties of polyaniline. Polym. Int. 59, 552–556 (2010). https://doi.org/10.1002/pi.2736

    Article  CAS  Google Scholar 

  29. K. Sing, The use of nitrogen adsorption for the characterisation of porous materials. Colloids Surf. A 187–188, 3–9 (2001). https://doi.org/10.1016/S0927-7757(01)00612-4

    Article  Google Scholar 

  30. J. Choma, M. Jaroniec, M. Kloske, Improved pore-size analysis of carbonaceous adsorbents. Adsorpt. Sci. Technol. 20, 307–315 (2002). https://doi.org/10.1260/026361702760254487

    Article  CAS  Google Scholar 

  31. C.M. Lastoskie, A modified Horvath-Kawazoe method for micropore size analysis, in Characterisation Porous Solids V, ed. by K.K. Unger, G. Kreysa, J.P.B.T.-S. in S.S. and C. Baselt. (Elsevier, Amsterdam, 2000), pp. 475–484

  32. S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry. J. Electroanal. Chem. 327, 353–376 (1992). https://doi.org/10.1016/0022-0728(92)80162-W

    Article  CAS  Google Scholar 

  33. R.S. Nicholson, Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965). https://doi.org/10.1021/ac60230a016

    Article  CAS  Google Scholar 

  34. S. Kerkhofs, T. Willhammar, H. Van Den Noortgate, C.E.A. Kirschhock, E. Breynaert, G. Van Tendeloo, S. Bals, J.A. Martens, Self-assembly of Pluronic F127—silica spherical core-shell nanoparticles in cubic close-packed structures. Chem. Mater. 27, 5161–5169 (2015). https://doi.org/10.1021/acs.chemmater.5b01772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Nagarajan, Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18, 31–38 (2002). https://doi.org/10.1021/la010831y

    Article  CAS  Google Scholar 

  36. Z. Yan, Y. Gu, X. Wang, Y. Hu, X. Li, Degradation of aniline by ferrous ions activated persulfate: impacts, mechanisms, and by-products. Chemosphere 268, 129237 (2021). https://doi.org/10.1016/j.chemosphere.2020.129237

    Article  CAS  PubMed  Google Scholar 

  37. N. Gao, J. Yu, S. Chen, X. Xin, L. Zang, Interfacial polymerization for controllable fabrication of nanostructured conducting polymers and their composites. Synth. Met. 273, 116693 (2021). https://doi.org/10.1016/j.synthmet.2020.116693

    Article  CAS  Google Scholar 

  38. J. Cihlář, Hydrolysis and polycondensation of ethyl silicates. 1. Effect of pH and catalyst on the hydrolysis and polycondensation of tetraethoxysilane (TEOS). Colloids Surf. A 70, 239–251 (1993). https://doi.org/10.1016/0927-7757(93)80298-S

    Article  Google Scholar 

  39. M. Bláha, M. Varga, J. Prokeš, A. Zhigunov, J. Vohlídal, Effects of the polymerization temperature on the structure, morphology and conductivity of polyaniline prepared with ammonium peroxodisulfate. Eur. Polym. J. 49, 3904–3911 (2013). https://doi.org/10.1016/j.eurpolymj.2013.08.018

    Article  CAS  Google Scholar 

  40. T. Sano, H. Ebihara, S. Sano, T. Okabe, H. Itagaki, The ways of connecting crystalline phases having tubular cavities like stringing beads: new conductive polymer composites prepared by the polymerization of aniline in highly oriented ε crystalline phase of syndiotactic polystyrene. Eur. Polym. J. 138, 109975 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109975

    Article  CAS  Google Scholar 

  41. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  42. M. Mesa, L. Sierra, J.-L. Guth, Contribution to the study of the formation mechanism of mesoporous SBA-15 and SBA-16 type silica particles in aqueous acid solutions. Microporous Mesoporous Mater. 112, 338–350 (2008). https://doi.org/10.1016/j.micromeso.2007.10.008

    Article  CAS  Google Scholar 

  43. T.H. Trân, D. Debarnot, E. Richaud, Thermal oxidative stability of polyanilines. Polym. Test. 81, 106187 (2020). https://doi.org/10.1016/j.polymertesting.2019.106187

    Article  CAS  Google Scholar 

  44. D. Grau-Marin, J. Silvestre-Albero, E.O. Jardim, J. Jagiello, W.R. Betz, L.E. Peña, Evaluation of the textural properties of ultramicroporous carbons using experimental and theoretical methods. Carbon N. Y. 157, 495–505 (2020). https://doi.org/10.1016/j.carbon.2019.10.035

    Article  CAS  Google Scholar 

  45. A. Vinu, P. Srinivasu, M. Takahashi, T. Mori, V.V. Balasubramanian, K. Ariga, Controlling the textural parameters of mesoporous carbon materials. Microporous Mesoporous Mater. 100, 20–26 (2007). https://doi.org/10.1016/j.micromeso.2006.10.008

    Article  CAS  Google Scholar 

  46. Z. Lei, L. An, L. Dang, M. Zhao, J. Shi, S. Bai, Y. Cao, Highly dispersed platinum supported on nitrogen-containing ordered mesoporous carbon for methanol electrochemical oxidation. Microporous Mesoporous Mater. 119, 30–38 (2009). https://doi.org/10.1016/j.micromeso.2008.09.033

    Article  CAS  Google Scholar 

  47. W. Zhu, X. Meng, Y. Zhan, H. Li, J. Ma, J. Liu, C. Zhai, W. Zhang, X. Fang, T. Ding, Carbonization temperature controlled thermal conductivity of graphitic carbon nanoparticles and their polymer composites. AIP Adv. 8, 55332 (2018). https://doi.org/10.1063/1.5025148

    Article  ADS  CAS  Google Scholar 

  48. H. Orleans-Boham, N.A. Elessawy, A. El-Shazly, M.F. Elkady, Production and characterization of nano-polyaniline and carbonized polyaniline for potential application as energy storage devices. Mater. Today Proc. 33, 1909–1912 (2020). https://doi.org/10.1016/j.matpr.2020.05.494

    Article  CAS  Google Scholar 

  49. L. Blandón-Naranjo, F. DellaPelle, M.V. Vázquez, J. Gallego, A. Santamaría, M. Alzate-Tobón, D. Compagnone, Electrochemical Behaviour of Microwave-assisted Oxidized MWCNTs Based Disposable Electrodes: Proposal of a NADH Electrochemical Sensor. Electroanalysis. 30, 509–516 (2018). https://doi.org/10.1002/elan.201700674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the neutron beam time provided by Institut Laue-Langevin, Grenoble, France and Laboratoire Léon Brillouin, Saclay, France. Leidy Hoyos thanks Department of Basic Sciences, Tecnologico de Antioquia.

Author information

Authors and Affiliations

Authors

Contributions

Leidy Hoyos was responsible for the synthesis of the materials presented in the article. Leidy Hoyos and Monica Mesa conducted the physicochemical characterization of the materials. Lucas Blandon performed the electrochemical characterization of the materials. Peter Fouquet and Leidy Hoyos contributed to the characterization of hydrogen diffusion and TEM. All authors participated in the revision and correction of the text.

Corresponding author

Correspondence to Leidy Hoyos Giraldo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17012 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyos Giraldo, L., Blandón-Naranjo, L., Fouquet, P. et al. Controllable synthesis of porous N-doped carbons using aniline and Pluronic F127 micellar system for hydrogen storage and electrochemical applications. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01565-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01565-0

Keywords

Navigation