Skip to main content
Log in

Green Structural Retrofitting Materials for Fire-Damaged Reinforced Concrete Buildings: Advances in Sustainable Repair of Distressed Buildings

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

One environment that hinders the performance of reinforced concrete is fire. In most cases, this results in the affected part or the entire structure being rendered useless or completely collapsing. When fire mishaps happen in structures, this is the case. This study reviews green structural retrofitting materials for reinforced concrete buildings in an effort to repair damaged structures in an environmentally friendly manner. The information gathered from earlier laboratory test results is assembled to comprehend the impact of room temperature strength properties and varied concrete mix material composition on the residual mechanical properties of concrete. The performance of various fibers, synthetic and natural, as laminate materials for concrete were evaluated, and the study showed that to a significant extent, distressed structural elements could be repaired with retrofits. However, provision of appropriate guidelines for using natural fibre laminates for retrofitting has not been overly explored. This review has highlighted areas that require further study in order to fully understand the residual strength characteristics of concrete exposed to high temperatures, particularly damaged concrete that have been retrofitted with fibers. Overall, the review's findings will be helpful to academics, professionals in the field of civil engineering, and those engaged in construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ahrens M, Maheshwari R (2021) Home structure fires. National Fire Protection Association (NFPA), (October), 20

  2. Oloke OC, Oluwatobi AO, Oni A, Oke D (2022) Assessment of causes and control of fire disaster in Arepo neighbourhood, Ogun State. Nigeria IOP Conf Ser. https://doi.org/10.1088/1755-1315/993/1/012004

    Article  Google Scholar 

  3. Umanah AA II, IK E, Rukewe IM (2018) Statistical analysis of fire outbreaks in homes and public buildings in Nigeria: a case study of Lagos State. Int J Eng Res Adv Technol 4(8):21–30. https://doi.org/10.31695/ijerat.2018.3294

    Article  Google Scholar 

  4. Haddad RH, Almomani OA (2017) Recovering flexural performance of thermally damaged concrete beams using NSM CFRP strips. Constr Build Mater 154:632–643. https://doi.org/10.1016/j.conbuildmat.2017.07.211

    Article  CAS  Google Scholar 

  5. Haddad RH, Yaghmour EM (2020) Retrofitting heat-damaged concrete beams using different profiles of side NSM CFRP strips. Structures 28(February):2232–2243. https://doi.org/10.1016/j.istruc.2020.10.027

    Article  Google Scholar 

  6. Hassan A, Aldhafairi F, Abd-EL-Hafez LM, Abouelezz AEY (2019) Retrofitting of different types of reinforced concrete beams after exposed to elevated temperature. Eng Struct 194(May):420–430. https://doi.org/10.1016/j.engstruct.2019.05.084

    Article  Google Scholar 

  7. Miakhil SU, Singh G (2020) Retrofitting of reinforced concrete beams using cfrp sheets. J Green Eng 10(11):10438–10448

    Google Scholar 

  8. Roy S, Khan MSR, Ahmad SI (2013) Comparative cost analysis of possible seismic retrofitting schemes for multi-story unreinforced masonry building. Procedia Eng 54:584–590. https://doi.org/10.1016/j.proeng.2013.03.053

    Article  Google Scholar 

  9. Liu J, Zhuge Y, Ma X, Liu M, Liu Y, Wu X, Xu H (2022) Physical and mechanical properties of expanded vermiculite (EV) embedded foam concrete subjected to elevated temperatures. Case Stud Constr Mater 16(January):e01038. https://doi.org/10.1016/j.cscm.2022.e01038

    Article  Google Scholar 

  10. Liu Z, Wang H, Yang L, Du J (2022) Research on mechanical properties and durability of flax/glass fiber bio-hybrid FRP composites laminates. Compos Struct 290:115566. https://doi.org/10.1016/j.compstruct.2022.115566

    Article  CAS  Google Scholar 

  11. Yang S, Chu M, Chen F, Fu M, Lv Y, Xiao Z et al (2022) Effect of different environmental conditions on durabilities of polyester- and vinylester-based glass-fiber-reinforced polymer pultruded profiles. Front Mater. https://doi.org/10.3389/fmats.2022.862872

    Article  Google Scholar 

  12. Zaiter A, Lau TL (2021) Experimental study of jacket height and reinforcement effects on seismic retrofitting of concrete columns. Structures 31:1084–1095. https://doi.org/10.1016/j.istruc.2021.02.020

    Article  Google Scholar 

  13. Rahimi A, Maheri MR (2020) The effects of steel X-brace retrofitting of RC frames on the seismic performance of frames and their elements. Eng Struct 206:110149. https://doi.org/10.1016/j.engstruct.2019.110149

    Article  Google Scholar 

  14. Nwankwo CO, Mahachi J, Olukanni DO, Musonda I (2023) Natural fibres and biopolymers in FRP composites for strengthening concrete structures: a mixed review. Constr Build Mater 363:129661. https://doi.org/10.1016/j.conbuildmat.2022.129661

    Article  Google Scholar 

  15. Wu H, Shen A, Cheng Q, Cai Y, Ren G, Pan H, Deng S (2023) A review of recent developments in application of plant fibers as reinforcements in concrete. J Clean Prod 419:138265. https://doi.org/10.1016/j.jclepro.2023.138265

    Article  CAS  Google Scholar 

  16. Ožbolt J, Bošnjak J, Periškić G, Sharma A (2014) 3D Numerical analysis of reinforced concrete beams exposed to elevated temperature. Eng Struct 58:166–174. https://doi.org/10.1016/j.engstruct.2012.11.030

    Article  Google Scholar 

  17. Zhang HY, Li QY, Kodur V, Lv HR (2021) Effect of cracking and residual deformation on behavior of concrete beams with different scales under fire exposure. Eng Struct. https://doi.org/10.1016/j.engstruct.2021.112886

    Article  Google Scholar 

  18. Kodur VKR, Agrawal A (2016) An approach for evaluating residual capacity of reinforced concrete beams exposed to fire. Eng Struct 110:293–306. https://doi.org/10.1016/j.engstruct.2015.11.047

    Article  Google Scholar 

  19. Babalola OE, Awoyera PO, Le DH, Bendezú Romero LM (2021) A review of residual strength properties of normal and high strength concrete exposed to elevated temperatures: impact of materials modification on behaviour of concrete composite. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.123448

    Article  Google Scholar 

  20. Shahraki M, Hua N, Elhami-Khorasani N, Tessari A, Garlock M (2023) Residual compressive strength of concrete after exposure to high temperatures: a review and probabilistic models. Fire Saf J 135:103698. https://doi.org/10.1016/j.firesaf.2022.103698

    Article  CAS  Google Scholar 

  21. Kodur V (2014) Properties of concrete at elevated temperatures. ISRN Civil Eng 2014:1–15

    Article  Google Scholar 

  22. Chen Z, Xu R, Liang H (2022) Residual mechanical properties and numerical analysis of recycled pebble aggregate concrete after high temperature exposure and cooled by fire hydrant. Constr Build Mater 319(July 2021):126137. https://doi.org/10.1016/j.conbuildmat.2021.126137

    Article  CAS  Google Scholar 

  23. Guler S, Akbulut ZF (2022) Residual strength and toughness properties of 3D, 4D and 5D steel fiber-reinforced concrete exposed to high temperatures. Constr Build Mater 327(January):126945. https://doi.org/10.1016/j.conbuildmat.2022.126945

    Article  Google Scholar 

  24. Abolhasani A, Shakouri M, Dehestani M, Samali B, Banihashemi S (2022) A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures. Eng Fract Mech 261(2021):108221. https://doi.org/10.1016/j.engfracmech.2021.108221

    Article  Google Scholar 

  25. Hlavička V, Hlavicka-Laczák LE, Lublóy É (2022) Residual fracture mechanical properties of quartz and expanded clay aggregate concrete subjected to elevated temperature. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.126845

    Article  Google Scholar 

  26. Li S, Zhang J, Du G, Mao Z, Ma Q, Luo Z et al (2022) Properties of concrete with waste glass after exposure to elevated temperatures. J Build Eng 57(June):104822. https://doi.org/10.1016/j.jobe.2022.104822

    Article  Google Scholar 

  27. Vafaei D, Ma X, Hassanli R, Duan J, Zhuge Y (2022) Microstructural and mechanical properties of fiber-reinforced seawater sea-sand concrete under elevated temperatures. J Build Eng 50(January):104140. https://doi.org/10.1016/j.jobe.2022.104140

    Article  Google Scholar 

  28. Sanaei Ataabadi H, Sedaghatdoost A, Rahmani H, Zare A (2021) Microstructural characterization and mechanical properties of lightweight polymer concrete exposed to elevated temperatures. Constr Build Mater 311(March):125293. https://doi.org/10.1016/j.conbuildmat.2021.125293

    Article  CAS  Google Scholar 

  29. Al-Rousan RZ, Al-Muhiedat JN (2022) The behavior heated-damaged reinforced concrete beams retrofitted with different CFRP strip length and number of transverse groove. Case Stud Constr Mater 16(January):e00896. https://doi.org/10.1016/j.cscm.2022.e00896

    Article  Google Scholar 

  30. Hiremath PN, Yaragal SC (2018) Performance evaluation of reactive powder concrete with polypropylene fibers at elevated temperatures. Constr Build Mater 169:499–512. https://doi.org/10.1016/j.conbuildmat.2018.03.020

    Article  CAS  Google Scholar 

  31. Qin D, Gao P, Aslam F, Sufian M, Alabduljabbar H (2022) A comprehensive review on fire damage assessment of reinforced concrete structures. Case Stud Constr Mater 16:e00843. https://doi.org/10.1016/j.cscm.2021.e00843

    Article  Google Scholar 

  32. Osmani M (2011) Construction waste. In: Letcher TM, Vallero DA (eds) Waste. Academic Press, Boston, pp 207–218. https://doi.org/10.1016/B978-0-12-381475-3.10015-4

    Chapter  Google Scholar 

  33. D’Alpaos C, Valluzzi MR (2020) Protection of cultural heritage buildings and artistic assets from seismic hazard: a hierarchical approach. Sustainability. https://doi.org/10.3390/su12041608

    Article  Google Scholar 

  34. Rodrigues H, Pradhan PM, Furtado A, Rocha P, Vila-Pouca N (2018) Structural repair and strengthening of RC elements with concrete jacketing. In: Costa A, Arêde A, Varum H (eds) Strengthening and retrofitting of existing structures. Springer, Singapore, pp 181–198. https://doi.org/10.1007/978-981-10-5858-5_8

    Chapter  Google Scholar 

  35. Ganesh P, Murthy AR (2019) Repair, retrofitting and rehabilitation techniques for strengthening of reinforced concrete beams—a review. Adv Concr Constr 8(2):101–117. https://doi.org/10.12989/acc.2019.8.2.101

    Article  Google Scholar 

  36. Jumaat MZ, Kabir MH, Obaydullah M (2006) A review of the repair concrete beams. J Appl Sci Res 2(6):317–326

    Google Scholar 

  37. Ali MR, Anwar T, Ahmed SJ (2019). Influence of externally bonded basalt FRP wraps of varied fibre densities on shear strength of RC beams. In: International conference on recent advances in civil engineering infrastructure, (December).

  38. Askar MK, Hassan AF, Al-Kamaki YSS (2022) Flexural and shear strengthening of reinforced concrete beams using FRP composites: a state of the art. Case Stud Constr Mater 17(May):e01189. https://doi.org/10.1016/j.cscm.2022.e01189

    Article  Google Scholar 

  39. Keskin RSO, Arslan G, Sengun K (2017) Influence of CFRP on the shear strength of RC and SFRC beams. Constr Build Mater 153:16–24. https://doi.org/10.1016/j.conbuildmat.2017.06.170

    Article  CAS  Google Scholar 

  40. Oller E, Pujol M, Marí A (2019) Contribution of externally bonded FRP shear reinforcement to the shear strength of RC beams. Composites B 164(July 2018):235–248. https://doi.org/10.1016/j.compositesb.2018.11.065

    Article  CAS  Google Scholar 

  41. ThamrinZaidir R, Haris R (2019) Shear capacity of reinforced concrete beams strengthened with web side bonded CFRP sheets. MATEC Web of Conf 258:04010. https://doi.org/10.1051/matecconf/201925804010

    Article  CAS  Google Scholar 

  42. Siddika A, Mamun MAA, Alyousef R, Amran YHM (2019) Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: a review. J Build Eng 25:100798. https://doi.org/10.1016/j.jobe.2019.100798

    Article  Google Scholar 

  43. Nwankwo C, Ede AN, Olofinnade OM, Osofero AI (2019) NFRP strengthening of reinforced concrete beams. IOP Conf Ser 640(1):012074. https://doi.org/10.1088/1757-899X/640/1/012074

    Article  CAS  Google Scholar 

  44. Ekundayo G, Adejuyigbe S (2019) Reviewing the development of natural fiber polymer composite: a case study of sisal and jute. Am J Mech Mater Eng 3(1):1–10. https://doi.org/10.11648/j.ajmme.20190301.11

    Article  Google Scholar 

  45. Lau K, Hung P, Zhu MH, Hui D (2018) Properties of natural fibre composites for structural engineering applications. Composites B 136(2017):222–233. https://doi.org/10.1016/j.compositesb.2017.10.038

    Article  CAS  Google Scholar 

  46. Maheswaran J, Chellapandian M, Arunachelam N (2022) Retrofitting of severely damaged reinforced concrete members using fiber reinforced polymers: a comprehensive review. Structures 38(November 2021):1257–1276. https://doi.org/10.1016/j.istruc.2022.02.059

    Article  Google Scholar 

  47. Jahani Y, Baena M, Codina A, Barris C, Torres L (2022) Time-dependent behavior of NSM CFRP-strengthened RC beams under different service temperatures. Compos Struct 300(May):116106. https://doi.org/10.1016/j.compstruct.2022.116106

    Article  Google Scholar 

  48. Al-Rousan RZ (2021) Impact of elevated temperature and anchored grooves on the shear behavior of reinforced concrete beams strengthened with CFRP composites. Case Stud Constr Mater 14:e00487. https://doi.org/10.1016/j.cscm.2021.e00487

    Article  Google Scholar 

  49. Yu B, Kodur VKR (2014) Fire behavior of concrete T-beams strengthened with near-surface mounted FRP reinforcement. Eng Struct 80:350–361. https://doi.org/10.1016/j.engstruct.2014.09.003

    Article  Google Scholar 

  50. Zhang SS (2018) Bond strength model for near-surface mounted (NSM) FRP bonded joints: effect of concrete edge distance. Compos Struct 201(August 2017):664–675. https://doi.org/10.1016/j.compstruct.2018.06.089

    Article  Google Scholar 

  51. Abadel AA (2021) Experimental investigation for shear strengthening of reinforced self-compacting concrete beams using different strengthening schemes. J Market Res 15:1815–1829. https://doi.org/10.1016/j.jmrt.2021.09.012

    Article  CAS  Google Scholar 

  52. Effiong JU, Ede AN (2022) Experimental investigation on the strengthening of reinforced concrete beams using externally bonded and near-surface mounted natural fibre reinforced polymer composites—a review. Materials 15(17):5848. https://doi.org/10.3390/ma15175848

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petersen MR, Yossef M, Chen A (2017) Gap between code requirements and current state of research on safety performance of fiber-reinforced polymer for nonstructural building components. Pract Period Struct Des Constr. https://doi.org/10.1061/(asce)sc.1943-5576.0000324

    Article  Google Scholar 

  54. Liu T, Liu X, Feng P (2020) A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Composites B 191:107958. https://doi.org/10.1016/j.compositesb.2020.107958

    Article  CAS  Google Scholar 

  55. Alam MA, Al Riyami K (2018) Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates. Constr Build Mater 162:683–696. https://doi.org/10.1016/j.conbuildmat.2017.12.011

    Article  CAS  Google Scholar 

  56. Jadooe A, Al-Mahaidi R, Abdouka K (2017) Experimental and numerical study of strengthening of heat-damaged RC beams using NSM CFRP strips. Constr Build Mater 154:899–913. https://doi.org/10.1016/j.conbuildmat.2017.07.202

    Article  CAS  Google Scholar 

  57. Murad Y, Abu-AlHaj T (2021) Flexural strengthening and repairing of heat damaged RC beams using continuous near-surface mounted CFRP ropes. Structures 33(December 2020):451–462. https://doi.org/10.1016/j.istruc.2021.04.079

    Article  Google Scholar 

  58. Haddad RH, Harb AN (2021) CFRP ropes for retrofitting heat-damaged concrete beams. J Build Eng 43(April):102522. https://doi.org/10.1016/j.jobe.2021.102522

    Article  Google Scholar 

  59. Abdulrahman AS, Kadir MRA (2021) Behavior and flexural strength of fire-damaged high-strength reinforced rectangular concrete beams with tension or compression zones exposed to fire repaired with CFRP sheets. Case Stud Constr Mater 15(August):e00779. https://doi.org/10.1016/j.cscm.2021.e00779

    Article  Google Scholar 

  60. Xu Q, Chen L, Han C, Harries KA, Xu Z (2019) Experimental research on fire-damaged RC continuous T-beams subsequently strengthened with CFRP sheets. Eng Struct 183(August 2018):135–149. https://doi.org/10.1016/j.engstruct.2019.01.025

    Article  Google Scholar 

  61. Bastin DRA, Sharma UK, Bhargava P (2017) A study on different techniques of restoration of fire damaged reinforced concrete flexural members. J Struct Fire Eng 8(2):131–148. https://doi.org/10.1108/JSFE-03-2017-0026

    Article  Google Scholar 

  62. Haddad RH, Shannag MJ, Moh’D A (2008) Repair of heat-damaged RC shallow beams using advanced composites. Mater Struct 41(2):287–299. https://doi.org/10.1617/s11527-007-9238-9

    Article  Google Scholar 

  63. Ede AN, Ben-Ejeagwu B, Akpabot AI, Oyebisi SO, Olofinnade OM, Mark OG (2021) Review of the mechanical and durability properties of natural fibre laminate-strengthened reinforced concrete beams. IOP Conf Ser 1036(1):012043. https://doi.org/10.1088/1757-899x/1036/1/012043

    Article  CAS  Google Scholar 

  64. Tao Y, Hadigheh SA, Wei Y (2023) Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: a critical review and cost benefit analysis. Structures 53:1540–1556. https://doi.org/10.1016/j.istruc.2023.05.018

    Article  Google Scholar 

  65. Yinh S, Hussain Q, Joyklad P, Chaimahawan P, Rattanapitikon W, Limkatanyu S, Pimanmas A (2021) Strengthening effect of natural fiber reinforced polymer composites (NFRP) on concrete. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2021.e00653

    Article  Google Scholar 

  66. Chin SC, Tong FS, Doh SI, Gimbun J, Ong HR, Serigar JP (2018) Strengthening performance of PALF-epoxy composite plate on reinforced concrete beams. IOP Conf Ser. https://doi.org/10.1088/1757-899X/318/1/012026

    Article  Google Scholar 

  67. Nwankwo CO, Ede AN (2020) Flexural strengthening of reinforced concrete beam using a natural fibre reinforced polymer laminate: an experimental and numerical study. Mater Struct. https://doi.org/10.1617/s11527-020-01573-x

    Article  Google Scholar 

  68. Song H, Liu J, He K, Ahmad W (2021) A comprehensive overview of jute fiber reinforced cementitious composites. Case Stud Constr Mater 15:e00724. https://doi.org/10.1016/j.cscm.2021.e00724

    Article  Google Scholar 

  69. Madhavi K, Harshith VV, Gangadhar M, Chethan Kumar V, Raghavendra T (2021) External strengthening of concrete with natural and synthetic fiber composites. Mater Today 38:2803–2809. https://doi.org/10.1016/j.matpr.2020.08.737

    Article  CAS  Google Scholar 

  70. Varghese A, Unnikrishnan S (2023) Mechanical strength of coconut fiber reinforced concrete. Mater Today. https://doi.org/10.1016/j.matpr.2023.05.637

    Article  Google Scholar 

  71. Umoren SA, Eduok UM, Israel AU, Obot IB, Solomon MM (2012) Coconut coir dust extract: a novel eco-friendly corrosion inhibitor for Al in HCl solutions. Green Chem Lett Rev 5(3):303–313. https://doi.org/10.1080/17518253.2011.625980

    Article  CAS  Google Scholar 

  72. Umoren SA, Solomon MM, Eduok UM, Obot IB, Israel AU (2014) Inhibition of mild steel corrosion in H2SO4 solution by coconut coir dust extract obtained from different solvent systems and synergistic effect of iodide ions: Ethanol and acetone extracts. J Environ Chem Eng 2(2):1048–1060. https://doi.org/10.1016/j.jece.2014.03.024

    Article  CAS  Google Scholar 

  73. Ren G, Yao B, Huang H, Gao X (2021) Influence of sisal fibers on the mechanical performance of ultra-high performance concretes. Constr Build Mater 286:122958. https://doi.org/10.1016/j.conbuildmat.2021.122958

    Article  Google Scholar 

  74. Chow CPL, Xing XS, Li RKY (2007) Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos Sci Technol 67(2):306–313. https://doi.org/10.1016/j.compscitech.2006.08.005

    Article  CAS  Google Scholar 

  75. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368. https://doi.org/10.1016/j.matdes.2012.06.015

    Article  CAS  Google Scholar 

  76. Chin SC, Moh JNS, Doh SI, Mat Yahaya F, Gimbun J (2019) Strengthening of reinforced concrete beams using bamboo fiber/epoxy composite plates in flexure. Key Eng Mater 821:465–471. https://doi.org/10.4028/www.scientific.net/KEM.821.465

    Article  Google Scholar 

  77. Awoyera PO, Nworgu TA, Shanmugam B, Arunachalam KP, Mansouri I, Miguel L et al (2021) Structural retrofitting of corroded reinforced concrete beams using bamboo fiber laminate. Materials 14:6711

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shakir Abbood I, aldeen Odaa S, Hasan KF, Jasim MA (2021) Properties evaluation of fiber reinforced polymers and their constituent materials used in structures—a review. Mater Today 43:1003–1008. https://doi.org/10.1016/j.matpr.2020.07.636

    Article  CAS  Google Scholar 

  79. Karthik S, Ram Mohan Rao P, Awoyera PO (2017) Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. J King Saud Univ Eng Sci 29(4). https://doi.org/10.1016/j.jksues.2016.12.003

  80. Awoyera PO, Akin-Adeniyi A, Bahrami A, Romero LMB (2024) Structural performance of fire-damaged concrete beams retrofitted using bamboo fiber laminates. Results Eng 21:101821. https://doi.org/10.1016/j.rineng.2024.101821

    Article  Google Scholar 

  81. Awoyera PO, Althoey F, Bahrami A, Apuye PU, Alotaibi BS, Abuhussain MA (2024) Structural retrofitting of RC slabs using bamboo fibre laminate: Flexural performance and crack patterns. Heliyon 10(2). https://doi.org/10.1016/j.heliyon.2024.e23999

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work, under the Research Groups Funding program grant code (NU/RG/SERC/12/2). The authors also appreciate the support received from the Peruvian University of Applied Sciences (UPC) for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul O. Awoyera.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awoyera, P.O., Akin-Adeniyi, A., Althoey, F. et al. Green Structural Retrofitting Materials for Fire-Damaged Reinforced Concrete Buildings: Advances in Sustainable Repair of Distressed Buildings. Fire Technol (2024). https://doi.org/10.1007/s10694-024-01557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10694-024-01557-1

Keywords

Navigation