Skip to main content
Log in

Synthesis, characterization, and thermal behavior of silica aerogel-embedded PVDF-HFP nanofibers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study aims to improve thermal insulation by incorporating silica aerogel into PVDF-HFP nanofiber membranes. The nanofiber membranes were created using needleless electrospinning, with careful optimization of voltage and polymer concentration. Silica aerogel was synthesized via the sol–gel ambient drying method. To integrate silica aerogel particles into PVDF-HFP nanofiber two approaches were used. First, ex-situ, involving the mixing of silica aerogel particles with the PVDF-HFP polymeric solution in predetermined proportions prior to electrospinning, and in-situ, which entailed synthesizing silica aerogel within pre-fabricated PVDF-HFP nanofiber membranes. Multiple analytical tools SEM, EDX, BET, FTIR, and TGA–DSC, were used to assess the composition, microstructure, pore-size, and thermal behavior of PVDF-HFP nanofiber embedded with silica aerogel. It was evident that the in-situ method proved to be more effective in reducing the thermal conductivity, more breathable, and water repellent making it a preferred choice for extreme cold-weather protection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Readers can access the data upon request (prashantjinde@gmail.com).

References

  1. K.E. Parmenter, F. Milstein, Mechanical properties of silica aerogels. J. Non Cryst. Solids 223, 179–189 (1998). https://doi.org/10.1016/S0022-3093(97)00430-4

    Article  ADS  CAS  Google Scholar 

  2. Z. Mazrouei-Sebdani, M. Naeimirad, S. Peterek, H. Begum, S. Galmarini, F. Pursche, E. Baskin, S. Zhao, T. Gries, W.J. Malfait, Multiple assembly strategies for silica aerogel-fiber combinations—a review. Mater. Des. (2022). https://doi.org/10.1016/j.matdes.2022.111228

    Article  Google Scholar 

  3. O. Palacio, W.J. Malfait, S. Michel, M. Barbezat, Z. Mazrouei-Sebdani, Vibration and structure-borne sound isolation properties of silica aerogels. Constr. Build. Mater. (2023). https://doi.org/10.1016/j.conbuildmat.2023.132568

    Article  Google Scholar 

  4. R. Hasanzadeh, T. Azdast, P.C. Lee, C.B. Park, A review of the state-of-the-art on thermal insulation performance of polymeric foams. Therm. Sci. Eng. Prog. (2023). https://doi.org/10.1016/j.tsep.2023.101808

    Article  Google Scholar 

  5. S. Ahmad, S. Ahmad, J.N. Sheikh, Silica centered aerogels as advanced functional material and their applications: a review. J. Non Cryst. Solids (2023). https://doi.org/10.1016/j.jnoncrysol.2023.122322

    Article  Google Scholar 

  6. J.C.H. Wong, H. Kaymak, S. Brunner, M.M. Koebel, Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous Mesoporous Mater. 183, 23–29 (2014). https://doi.org/10.1016/J.MICROMESO.2013.08.029

    Article  CAS  Google Scholar 

  7. L.W. Hrubesh, Aerogel applications. J. Non Cryst. Solids 225, 335–342 (1998). https://doi.org/10.1016/S0022-3093(98)00135-5

    Article  ADS  CAS  Google Scholar 

  8. F. Akhter, S.A. Soomro, V.J. Inglezakis, Silica aerogels; a review of synthesis, applications and fabrication of hybrid composites. J. Porous Mater. 28, 1387–1400 (2021). https://doi.org/10.1007/S10934-021-01091-3/METRICS

    Article  CAS  Google Scholar 

  9. A. Soleimani Dorcheh, M.H. Abbasi, Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199, 10 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.060

    Article  CAS  Google Scholar 

  10. H. Choi, V.G. Parale, K.Y. Lee, H.Y. Nah, Z. Driss, D. Driss, A. Bouabidi, S. Euchy, H.H. Park, Polypropylene/silica aerogel composite incorporating a conformal coating of methyltrimethoxysilane-based aerogel. J. Nanosci. Nanotechnol. 19, 1376–1381 (2018). https://doi.org/10.1166/JNN.2019.16257

    Article  Google Scholar 

  11. N. Nazeran, J. Moghaddas, Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application. J. Non Cryst. Solids 461, 1–11 (2017). https://doi.org/10.1016/J.JNONCRYSOL.2017.01.037

    Article  ADS  CAS  Google Scholar 

  12. Z.A. Abdul Halim, M.A. Mat Yajid, M.H. Idris, H. Hamdan, Effects of silica aerogel particle sizes on the thermal–mechanical properties of silica aerogel—unsaturated polyester composites. Plast Rubber Compos 46, 184–192 (2017). https://doi.org/10.1080/14658011.2017.1306913

    Article  ADS  CAS  Google Scholar 

  13. G. Guzel Kaya, H. Deveci, Synergistic effects of silica aerogels/xerogels on properties of polymer composites: a review. J. Ind. Eng. Chem. 89, 13–27 (2020). https://doi.org/10.1016/J.JIEC.2020.05.019

    Article  CAS  Google Scholar 

  14. R. Szczepaniak, A. Komorek, P. Przybyłek, A. Krzyżak, M. Roskowicz, J. Godzimirski, E. Pinkiewicz, W. Jaszczak, E. Kosicka, Research into mechanical properties of an ablative composite on a polymer matrix base with aerogel particles. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2021.114855

    Article  Google Scholar 

  15. M. Kucharek, W. MacRae, L. Yang, Investigation of the effects of silica aerogel particles on thermal and mechanical properties of epoxy composites. Compos. Part A Appl. Sci. Manuf. 139, 106108 (2020). https://doi.org/10.1016/J.COMPOSITESA.2020.106108

    Article  CAS  Google Scholar 

  16. S. Ramesh, H.S. Kim, Y.J. Lee, G.W. Hong, J.H. Kim, Nanostructured silica/gold-cellulose-bonded amino-POSS hybrid composite via sol-gel process and its properties. Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-2122-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. J.H. Moon, J.S. Seo, Y. Xu, S. Yang, Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. (2009). https://doi.org/10.1039/b901226e

    Article  Google Scholar 

  18. G. Hayase, K. Kanamori, K. Nakanishi, T. Hanada, Synthesis of new flexible aerogels from di- and trifunctional organosilanes. MRS Proc. (2011). https://doi.org/10.1557/opl.2011.216

    Article  Google Scholar 

  19. S. Sert Çok, N. Gizli, Microstructural properties and heat transfer characteristics of in-situ modified silica aerogels prepared with different organosilanes. Int. J. Heat Mass Transf. (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122618

    Article  Google Scholar 

  20. D.B. Anthony, S.N. Nguyen, H. Qian, S. Xu, C.M.D. Shaw, E.S. Greenhalgh, A. Bismarck, M.S.P. Shaffer, Silica aerogel infused hierarchical glass fiber polymer composites. Compos. Commun. 39, 101531 (2023). https://doi.org/10.1016/j.coco.2023.101531

    Article  Google Scholar 

  21. J. Liu, Z.W. He, G. Bai, W.Y. Zhu, X. Li, H.X. Xie, H. Wang, M.J. Chang, J. Yang, Y.Q. Wang, Z.M. Luo, Fabrication of novel water glass-based monolithic aerogels with fibrous skeleton under alkaline for oil sorption and thermal evaporation. J. Non Cryst. Solids (2023). https://doi.org/10.1016/j.jnoncrysol.2023.122349

    Article  Google Scholar 

  22. X. Yang, Y. Sun, D. Shi, J. Liu, Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite. Mater. Sci. Eng. A 528, 4830–4836 (2011). https://doi.org/10.1016/J.MSEA.2011.03.013

    Article  Google Scholar 

  23. S. Sedighi, A. Khoddami, H. Izadan, M.A. Alsharif, M. Naeimirad, The influence of silica aerogels on physical, mechanical, and morphological properties of melt-spun POY and DTY polyester yarns. Polym. Test. 112, 107628 (2022). https://doi.org/10.1016/J.POLYMERTESTING.2022.107628

    Article  CAS  Google Scholar 

  24. S. Meng, J. Zhang, W. Chen, X. Wang, M. Zhu, Construction of continuous hollow silica aerogel fibers with hierarchical pores and excellent adsorption performance. Microporous Mesoporous Mater. 273, 294–296 (2019). https://doi.org/10.1016/J.MICROMESO.2018.07.021

    Article  CAS  Google Scholar 

  25. H. Li, L. Song, C. Sun, R. Li, Y. Fu, H. Zhang, A. Yang, H. Liu, Thermal insulation of silica aerogel/PMMA composites with amino-capped polydivinylsiloxane phase interfaces. IEEE J. Sel. Top. Quantum Electron. 25, 1107–1114 (2018). https://doi.org/10.1515/SECM-2017-0248/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  26. Z. Sheng, Z. Liu, Y. Hou, H. Jiang, Y. Li, G. Li, X. Zhang, The rising aerogel fibers: status, challenges, and opportunities. Adv. Sci. 10, 2205762 (2023). https://doi.org/10.1002/ADVS.202205762

    Article  CAS  Google Scholar 

  27. U. Berardi, S. Zaidi, Characterization of commercial aerogel-enhanced blankets obtained with supercritical drying and of a new ambient pressure drying blanket. Energy Build 198, 542–552 (2019). https://doi.org/10.1016/J.ENBUILD.2019.06.027

    Article  Google Scholar 

  28. Y. Huang, S. He, G. Chen, H. Dai, B. Yuan, X. Chen, X. Yang, Fast preparation of glass fiber/silica aerogel blanket in ethanol & water solvent system. J. Non Cryst. Solids 505, 286–291 (2019). https://doi.org/10.1016/J.JNONCRYSOL.2018.11.003

    Article  ADS  CAS  Google Scholar 

  29. P. Jinde, R. Naik, A. Rakshit, Characterization and synthesis of polyester and viscose nonwovens fabrics embedded with nanoporous amorphous silica. J. Text. Inst. 110, 972–979 (2019). https://doi.org/10.1080/00405000.2018.1534305

    Article  CAS  Google Scholar 

  30. F. He, W.J. Yu, M.H. Fang, X.D. He, M.W. Li, An overview on silica aerogels synthesized by siloxane co-precursors. J. Inorg. Mater. 30, 1243 (2015). https://doi.org/10.15541/JIM20150223

    Article  CAS  Google Scholar 

  31. R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 919, 140–145 (2009). https://doi.org/10.1016/J.MOLSTRUC.2008.08.025

    Article  ADS  CAS  Google Scholar 

  32. M.A.R. Bhuiyan, L. Wang, R.A. Shanks, Z.A. Ara, T. Saha, Electrospun polyacrylonitrile–silica aerogel coating on viscose nonwoven fabric for versatile protection and thermal comfort. Cellulose 27, 10501–10517 (2020). https://doi.org/10.1007/s10570-020-03489-9

    Article  CAS  Google Scholar 

  33. H. Zheng, H. Shan, Y. Bai, X. Wang, L. Liu, J. Yu, B. Ding, Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Adv. 5, 91813–91820 (2015). https://doi.org/10.1039/c5ra18137b

    Article  ADS  CAS  Google Scholar 

  34. N.M. Mahmoodi, Z. Mokhtari-Shourijeh, S. Langari, A. Naeimi, B. Hayati, M. Jalili, K. Seifpanahi-Shabani, Silica aerogel/polyacrylonitrile/polyvinylidene fluoride nanofiber and its ability for treatment of colored wastewater. J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2020.129418

    Article  Google Scholar 

  35. H. Wu, Y. Chen, Q. Chen, Y. Ding, X. Zhou, H. Gao, Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation. J. Nanomater. (2013). https://doi.org/10.1155/2013/375093

    Article  Google Scholar 

  36. R. Arat, H. Baskan, G. Ozcan, P. Altay, Hydrophobic silica-aerogel integrated polyacrylonitrile nanofibers. J. Ind. Text. 51, 4740S-4756S (2022). https://doi.org/10.1177/1528083720939670

    Article  CAS  Google Scholar 

  37. Y.G. Kim, H.S. Kim, S.M. Jo, S.Y. Kim, B.J. Yang, J. Cho, S. Lee, J.E. Cha, Thermally insulating, fire-retardant, smokeless and flexible polyvinylidene fluoride nanofibers filled with silica aerogels. Chem. Eng. J. 351, 473–481 (2018). https://doi.org/10.1016/j.cej.2018.06.102

    Article  CAS  Google Scholar 

  38. K.P. Matabola, R.M. Moutloali, The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers—effect of sodium chloride. J. Mater. Sci. 48, 5475–5482 (2013). https://doi.org/10.1007/S10853-013-7341-6/METRICS

    Article  ADS  CAS  Google Scholar 

  39. V. Jacobs, R.D. Anandjiwala, M. Maaza, The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J. Appl. Polym. Sci. 115, 3130–3136 (2010). https://doi.org/10.1002/APP.31396

    Article  CAS  Google Scholar 

  40. I. Partheniadis, I. Nikolakakis, I. Laidmäe, J. Heinämäki, A mini-review: needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes 8, 673 (2020). https://doi.org/10.3390/PR8060673

    Article  CAS  Google Scholar 

  41. A. Venkateswara Rao, S.D. Bhagat, Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid–base) sol–gel process. Solid State Sci. 6, 945–952 (2004). https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2004.04.010

    Article  ADS  Google Scholar 

  42. A.M. Al-Dhahebi, M.S.M. Saheed, M. Mustapha, Effects of solution concentration on the synthesis of polyvinylidene fluoride (PVDF) electrospun nanofibers. Mater Today Proc 80, 2119–2124 (2023). https://doi.org/10.1016/J.MATPR.2021.06.128

    Article  CAS  Google Scholar 

  43. T.M.W.J. Bandara, A.M.J.S. Weerasinghe, M.A.K.L. Dissanayake, G.K.R. Senadeera, M. Furlani, I. Albinsson, B.E. Mellander, Characterization of poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell. Electrochim. Acta 266, 276–283 (2018). https://doi.org/10.1016/J.ELECTACTA.2018.02.025

    Article  CAS  Google Scholar 

  44. S.V.K. Shalu, R.K. Singh, Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C Mater 3, 7305–7318 (2015). https://doi.org/10.1039/C5TC00940E

    Article  CAS  Google Scholar 

  45. D. Saikia, Y.W. Chen-Yang, Y.T. Chen, Y.K. Li, S.I. Lin, Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 234, 24–32 (2008). https://doi.org/10.1016/J.DESAL.2007.09.066

    Article  CAS  Google Scholar 

  46. P.M. Shewale, A.V. Rao, A.P. Rao, Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appl. Surf. Sci. 254, 6902–6907 (2008). https://doi.org/10.1016/j.apsusc.2008.04.109

    Article  ADS  CAS  Google Scholar 

  47. S.A. Mahadik, F. Pedraza, V.G. Parale, H.H. Park, Organically modified silica aerogel with different functional silylating agents and effect on their physico-chemical properties. J. Non Cryst. Solids 453, 164–171 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.08.035

    Article  ADS  CAS  Google Scholar 

  48. Y. Xia, J. Li, H. Wang, Z. Ye, X. Zhou, H. Huang, Y. Gan, C. Liang, J. Zhang, W. Zhang, Synthesis and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries. J. Solid State Electrochem. 23, 519–527 (2018). https://doi.org/10.1007/S10008-018-4161-2

    Article  Google Scholar 

  49. H.Y. Nah, V.G. Parale, K.Y. Lee, H. Choi, T. Kim, C.H. Lim, J.Y. Seo, Y.S. Ku, J.W. Park, H.H. Park, Silylation of sodium silicate-based silica aerogel using trimethylethoxysilane as alternative surface modification agent. J. Solgel Sci. Technol. 87, 319–330 (2018). https://doi.org/10.1007/S10971-018-4729-4/METRICS

    Article  CAS  Google Scholar 

  50. Z. Li, X. Cheng, S. He, X. Shi, L. Gong, H. Zhang, Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos. Part A Appl. Sci. Manuf. 84, 316–325 (2016). https://doi.org/10.1016/J.COMPOSITESA.2016.02.014

    Article  CAS  Google Scholar 

  51. Y.J. Kim, C.H. Ahn, M.B. Lee, M.S. Choi, Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater. Chem. Phys. 127, 137–142 (2011). https://doi.org/10.1016/J.MATCHEMPHYS.2011.01.046

    Article  CAS  Google Scholar 

  52. Á. Lakatos, A. Trnik, Thermal characterization of fibrous aerogel blanket. MATEC Web of Conf. 282, 01001 (2019). https://doi.org/10.1051/MATECCONF/201928201001

    Article  CAS  Google Scholar 

  53. A. Lakatos, A. Csik, A. Trnik, I. Budai, Effects of the heat treatment in the properties of fibrous aerogel thermal insulation. Energies 12, 2001 (2019). https://doi.org/10.3390/EN12102001

    Article  CAS  Google Scholar 

  54. F.K. Ko, Y. Wan, Introduction to nanofiber materials (Cambridge University Press, Cambridge, 2014). https://doi.org/10.1017/CBO9781139021333

    Book  Google Scholar 

  55. F. Yang, X. Zhao, T. Xue, S. Yuan, Y. Huang, W. Fan, T. Liu, Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment. Sci. China Mater. 64, 1267–1277 (2021). https://doi.org/10.1007/S40843-020-1518-4/METRICS

    Article  CAS  Google Scholar 

  56. Á. Lakatos, A. Csík, I. Csarnovics, Experimental verification of thermal properties of the aerogel blanket. Case Stud. Therm. Eng. 25, 100966 (2021). https://doi.org/10.1016/J.CSITE.2021.100966

    Article  Google Scholar 

  57. M. Venkataraman, R. Mishra, D. Jasikova, T.M. Kotresh, J. Militky, Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures. J. Ind. Text. 45, 387–404 (2015). https://doi.org/10.1177/1528083714534711

    Article  CAS  Google Scholar 

  58. Y. Liu, H. Wu, Y. Zhang, J. Yang, F. He, Structure characteristics and hygrothermal performance of silica aerogel composites for building thermal insulation in humid areas. Energy Build (2020). https://doi.org/10.1016/j.enbuild.2020.110452

    Article  Google Scholar 

  59. Z. Mazrouei-Sebdani, L. Javazmi, A. Khoddami, F. Shams-Ghahfarokhi, T. Low, Fabrication of a silica aerogel and examination of its hydrophobic properties via contact angle and 3M water repellency tests. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/204/1/012014

    Article  Google Scholar 

  60. H. Cai, Y. Jiang, J. Feng, S. Zhang, F. Peng, Y. Xiao, L. Li, J. Feng, Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Mater. Des. 191, 108640 (2020). https://doi.org/10.1016/J.MATDES.2020.108640

    Article  CAS  Google Scholar 

  61. J. Liu, P. Buahom, C. Lu, H. Yu, C.B. Park, Microscopic revelation of the solid–gas coupling and Knudsen effect on the thermal conductivity of silica aerogel with inter-connected pores. Sci. Rep. 12, 1–14 (2022). https://doi.org/10.1038/s41598-022-24133-5

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

We thank The Bombay Textile Research Association (BTRA, Mumbai) for support in synthesizing and characterizing nanofibers, utilizing the Nanospider facility and SEM analysis. We also extend our appreciation to DST-FIST Analytical Instrumentation Laboratory, Jaysingpur College Jaysingpur, Sophisticated Analytical Instrument Facilities (DST- CFC) Shivaji University, Kolhapur for providing characterization facilities BET, ATR-FTIR, TGA-DSC.

Author information

Authors and Affiliations

Authors

Contributions

The list of authors for this paper and their respective contributions is as follows: PDJ (Corresponding Author)—Conceptualization, Methodology, Formal Analysis, Data Curation, Investigation, Writing—Original Draft. Prof. (Dr.) MYG (co-author)—Validation, Resources, Supervision. We (the corresponding author and co-author) confirm that, to our knowledge, all the claims, statements, and conclusions are true and are our jointly held opinions. We confirm that the manuscript has been approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed.

Corresponding author

Correspondence to Prashant D. Jinde.

Ethics declarations

Competing interests

We wish to confirm that we have no known competing financial interests or personal relationships that could have appeared to influence the work. No funding was received for this work.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinde, P.D., Gudiyawar, M.Y. Synthesis, characterization, and thermal behavior of silica aerogel-embedded PVDF-HFP nanofibers. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01317-5

Keywords

Navigation