Skip to main content

Advertisement

Log in

Oxidative Stress, Endoplasmic Reticulum Stress and Apoptosis in the Pathology of Alzheimer’s Disease

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) accounts for a major statistic among the class of neurodegenerative diseases. A number of mechanisms have been identified in its pathogenesis and progression which include the amyloid beta (Aβ) aggregation, hyperphosphorylation of tau protein, oxidative stress, endoplasmic reticulum (ER) stress and apoptosis. These processes are interconnected and contribute significantly to the loss of neurons, brain mass and consequential memory loss and other cognitive difficulties. Oxidative stress in AD appears to be caused by excess of oxygen free radicals and extracellular Aβ deposits that cause local inflammatory processes and activate microglia, another possible source of reactive oxygen species (ROS). ER Stress describes the accumulation of misfolded and unfolded proteins as a result of physiological and pathological stimuli including high protein demand, toxins, inflammatory cytokines, and mutant protein expression that disturbs ER homeostasis. When compared to age-matched controls, postmortem brain tissues from AD patients showed elevated levels of ER stress markers, such as PERK, eIF2α, IRE1α, the chaperone Grp78, and the downstream mediator of cell death CHOP. Apoptosis is in charge of eliminating unnecessary and undesired cells to maintain good health. However, it has been demonstrated that a malfunctioning apoptotic pathway is a major factor in the development of certain neurological and immunological problems and diseases in people, including neurodegenerative diseases. This article highlights and discussed some of the experimentally established mechanisms through which these processes lead to the development as well as the exacerbation of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ROS:

Reactive Oxygen Species

DNA:

Deoxyribonucleic acid

ATP:

Adenosine Triphosphate

PUFA:

Polyunsaturated fatty acid

RNA:

Ribonucleic acid

CSF:

Cerebrospinal fluid

APP:

Amyloid processing protein

Aβ:

Amyliod beta

NFT:

Neurofibrilliary tangles

TBARS:

Thiobarbituric acid reactive substance

HNE:

Trans-4-hydroxy-2-nonenal

F2-IsoPs:

F2-isoprostanes

MCI:

Mild cognitive impairment

CSF:

Cerebrospinal fluid

3-NT:

3nitrotyrosine

SOD:

Superoxide dismutase

ABAD:

Aβ-binding alcohol dehydrogenase

NMDAR:

N-methyl-D-aspartate receptors

AMPA:

α-amino-3-hydroxy-5-methyl-4isoxa-zolepropionic acid

ER:

Endoplasmic reticulum

UPR:

Unfolded Protein Response

VDAC:

Voltage-dependent anion channel

LDH:

Lactate dehydrogenase

MDH:

Malate dehydrogenase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

BCL-2:

B Cell lymphoma2

MAPK:

Mitogen activated protein kinase

BAD:

BCL2 associated agonist of cell death

APP/PS1:

amyloid precursor protein/presenilin 1

8OHdG:

8-hydroxy-2’-deoxyguanosine

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

IRE1:

Inositol-requiring enzyme-1

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

ATF6:

activating transcription factor 6

XBP1:

X-box binding protein 1

ASK1:

Apoptosis signal regulating kinase 1

JNK:

c-Jun N-terminal protein kinase

TNF:

Tumor necrosis factor

TRAF2:

TNF Receptor Associated Factor 2

eIF2α:

eukaryotic initiation factor 2

GADD34:

growth arrest and DNA damage-inducible protein

Atf-4:

Activating transcription factor 4

uORF:

upstream open reading frames

BZIP:

basic leucine-zipper (bZIP) proteins

CHOP:

C/EBP homologous protein

ATF6:

Activating transcription factor 6

ERAD:

Endoplasmic reticulum–associated protein degradation

BACE1:

β-site APP cleaving enzyme-1

CREB:

cAMP response element-binding protein

STZ:

Streptozotocin

OHC:

Organotypic hippocampal slice cultures

Bax:

Bcl-2-associated X protein

PAR-4:

Prostate apoptosis response

CARD:

Caspase recruitment domain

DED:

Death effector domain

SMAC/direct:

IAP binding protein with low pI (DIABLO),

HTRA:

high temperature requirement A (serine peptidase 2)

APAF-1:

Apoptotic protease-activating factor 1

CAD:

Caspase-activated DNase

AIF:

Apoptosis-inducing factor

CTL:

Cytotoxic T lymphocytes

BAK:

Bcl-2 antagonist killer 1

BIM:

Bcl-2 Interacting Mediator of cell death

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

References

  1. Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules, 25, 24 https://doi.org/10.3390/MOLECULES25245789.

    Article  Google Scholar 

  2. López Ricardo, Y., Reyes Zamora, M. C., Perodin Hernández, J., & Rodríguez Martínez, C. (2022). Prevalence of Alzheimer′s disease in rural and urban areas in Cuba and factors influencing on its occurrence: epidemiological cross-sectional protocol. BMJ Open, 12(11), e052704. https://doi.org/10.1136/bmjopen-2021-052704.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McGirr, S., Venegas, C., & Swaminathan, A. (2020). Alzheimers disease: A brief review. Journal of Experimental Neurology, 1(3), 89–98.

    Google Scholar 

  4. Tahami Monfared, A. A., Byrnes, M. J., White, L. A., & Zhang, Q. (2022). Alzheimer’s disease: Epidemiology and clinical progression. Neurology and Therapy, 11(2), 553–569. https://doi.org/10.1007/s40120-022-00338-8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schilling, L. P., Balthazar, M. L. F., Radanovic, M., Forlenza, O. V., Silagi, M. L., Smid, J., Barbosa, B. J. A. P., Frota, N. A. F., Souza, L. Cde, Vale, F. A. C., Caramelli, P., Bertolucci, P. H. F., Chaves, M. L. F., Brucki, S. M. D., Damasceno, B. P., & Nitrini, R. (2022). Diagnosis of Alzheimer’s disease: recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dementia & Neuropsychologia, 16(3), 25–39. https://doi.org/10.1590/1980-5764-dn-2022-s102en.

    Article  Google Scholar 

  6. Trejo-Lopez, J. A., Yachnis, A. T., & Prokop, S. (2022). Neuropathology of Alzheimer’s Disease. Neurotherapeutics, 19(1), 173–185. https://doi.org/10.1007/s13311-021-01146-y.

    Article  CAS  PubMed  Google Scholar 

  7. Srivastava, S., Ahmad, R., & Khare, S. K. (2021). Alzheimer’s disease and its treatment by different approaches: A review. European Journal of Medicinal Chemistry, 216, 113320. https://doi.org/10.1016/j.ejmech.2021.113320.

    Article  CAS  PubMed  Google Scholar 

  8. Ekundayo, B. E., Obafemi, T. O., Adewale, O. B., & Oyinloye, B. E. (2023). Donepezil-based combination therapy for Alzheimer’s disease and related neuropathies. Comparative Clinical Pathology, 32(4), 699–708. https://doi.org/10.1007/s00580-023-03487-w.

    Article  Google Scholar 

  9. Moreira, P. I., Plácido, A. I., Pereira, C. M. F., Duarte, A. I., Candeias, E., Correia, S. C., Santos, R. X., Carvalho, C., Cardoso, S., & Oliveira, C. R. (2014). The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer’s disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1842(9), 1444–1453. https://doi.org/10.1016/jbbadis201405003.

    Article  Google Scholar 

  10. Egbuna, C., & Ifemeje, J. C. (2017). Oxidative stress and nutrition. Tropical Journal of Applied Natural Sciences, 2(1), 110–116.

    Article  Google Scholar 

  11. Manisha, W. H., Richa, R., & Deepali, J. (2017). Oxidative stress and antioxidants: an overview. International Journal of Advanced Research and Review, 110, 110–111.

    Google Scholar 

  12. Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., & Sharifi-Rad, J. (2020). Lifestyle oxidative stress and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694. https://doi.org/10.3389/fphys202000694.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salim, S. (2016). Oxidative stress: a potential link between emotional wellbeing and immune response. Current opinion in pharmacology, 29, 70–76.

    Article  CAS  PubMed  Google Scholar 

  14. Preiser, J. C. (2012). Oxidative stress. Journal of Parenteral and Enteral Nutrition, 36(2), 147–154. https://doi.org/10.1177/0148607111434963.

    Article  CAS  PubMed  Google Scholar 

  15. Sinenko, S. A., Starkova, T. Y., Kuzmin, A. A., & Tomilin, A. N. (2021). Physiological signalling functions of reactive oxygen species in stem cells: from flies to man. Front Cell Dev Biol, 9, 714370. https://doi.org/10.3389/fcell2021714370.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gupta, R. K., Patel, A. K., Shah, N., Chaudhary, A. K., Jha, U. K., Yadav, U. C., & Pakuwal, U. (2014). Oxidative stress and antioxidants in disease and cancer: A review. Asian Pacific Journal of Cancer Prevention, 15, 4405–4409.

    Article  PubMed  Google Scholar 

  17. Adwas, A. A., Elsayed, A. S. I., Azab, A. E., & Quwaydir, F. A. (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology and Bioengineering, 6(1), 43–47.

    Article  Google Scholar 

  18. Di Bona, D., Scapagnini, G., Candore, G., Castiglia, L., Colonna-Romano, G., Duro, G., & Vasto, S. (2010). Immune-inflammatory responses and oxidative stress in Alzheimer’s disease: therapeutic implications. Current Pharmaceutical Design, 16(6), 684–691.

    Article  PubMed  Google Scholar 

  19. Haque, R. (2018). Amyloid Beta (Aβ) and oxidative stress: Progression of Alzheimer’s disease. Advances in Biotechnology Microbiology 11(1). https://doi.org/10.19080/aibm201811555802.

  20. Ahmad, W., Ijaz, B., Shabbiri, K., Ahmed, F., & Rehman, S. (2017). Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/ RNS generation. Journal of Biomedical Science, 24(1), 76. https://doi.org/10.1186/s12929-017-0379-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Padurariu, M., Ciobica, A., Lefter, R., Lacramioara Serban, I., Stefanescu, C., & Chirita, R. (2013). The oxidative stress hypothesis in Alzheimer’s disease. Psychiatria Danubina, 25(4), 4–9.

    Google Scholar 

  22. Chen, Z., & Zhong, C. (2014). Oxidative stress in Alzheimer’s disease. Neuroscience Bulletin, 30(2), 271–281. https://doi.org/10.1007/s12264-013-1423-y.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferreiro, E., Baldeiras, I., Ferreira, I. L., Costa, R. O., Rego, A. C., Pereira, C. F., & Oliveira, C. R. (2012). Mitochondrial- and endoplasmic reticulum-associated oxidative stress in alzheimers disease: From pathogenesis to biomarkers. International Journal of Cell Biology, 2012, 735206. https://doi.org/10.1155/2012/735206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tönnies, E., & Trushina, E. (2017). Oxidative stress synaptic dysfunction and Alzheimer’s disease. Journal of Alzheimer’s Disease, 57(4), 1105–1121. https://doi.org/10.3233/JAD-161088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., Pramodh, S., Alsulimani, A., Alkhanani, M. F., Harakeh, S., Hussain, A., Haque, S., & Reshi, M. S. (2022). Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells, 11(3), 552. https://doi.org/10.3390/cells11030552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamagno, E., Guglielmotto, M., Vasciaveo, V., & Tabaton, M. (2021). Oxidative stress and beta amyloid in Alzheimer’s disease which comes first: the chicken or the egg? Antioxidants (Basel), 10(9), 1479. https://doi.org/10.3390/antiox10091479.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, W. J., Zhang, X., & Chen, W. W. (2016). Role of oxidative stress in Alzheimer’s disease (review). Biomedical Reports, 4(5), 519–522. https://doi.org/10.3892/br2016630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, Z. (2019). Iron and oxidizing species in oxidative stress and Alzheimer’s disease. Aging Medicine, 2(2), 82–87. https://doi.org/10.1002/agm212074.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Misrani, A., Tabassum, S., & Yang, L. (2021). Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front Aging Neurosci, 13, 617588. https://doi.org/10.3389/fnagi2021617588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alves da Costa, C. A., da Manaa, W., el Duplan, E., & Checler, F. (2020). The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s disease physiopathology. Cells, 9(11), 2495. https://doi.org/10.3390/cells9112495.

    Article  CAS  Google Scholar 

  31. Oslowski, C. M., & Urano, F. (2011). Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods in Enzymology, 490, 71–92. https://doi.org/10.1016/B978-0-12-385114-700004-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manalo, R. V. M., & Medina, P. M. B. (2018). The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology Egyptian. Journal of Medical Human Genetics, 19(2), 59–68. https://doi.org/10.1016/jejmhg201707004.

    Article  Google Scholar 

  33. Lin, J. H., Walter, P., & Yen, T. S. B. (2008). Endoplasmic reticulum stress in disease pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 3, 399–425. https://doi.org/10.1146/annurevpathmechdis3121806151434.

    Article  CAS  Google Scholar 

  34. Hosoi, T., Nomura, J., Ozawa, K., Nishi, A., Nomura, Y. (2016) Possible involvement of endoplasmic reticulum stress in the pathogenesis of Alzheimer’s disease. Endoplasmic Reticulum Stress in Diseases 2(1). https://doi.org/10.1515/ersc-2015-0008

  35. Sprenkle, N. T., Sims, S. G., Sánchez, C. L., & Meares, G. P. (2017). Endoplasmic reticulum stress and inflammation in the central nervous system. Molecular Neurodegeneration, 12(1), 1–18. https://doi.org/10.1186/s13024-017-0183-y.

    Article  CAS  Google Scholar 

  36. Gerakis, Y., & Hetz, C. (2018). Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS Journal, 285(6), 995–1011. https://doi.org/10.1111/febs14332.

    Article  CAS  PubMed  Google Scholar 

  37. Gao, X., & Xu, Y. (2021). Therapeutic effects of natural compounds and small molecule inhibitors targeting endoplasmic reticulum stress in Alzheimer’s disease. Frontiers in Cell and Developmental Biology, 9, 745011. https://doi.org/10.3389/fcell2021745011.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ghemrawi, R., & Khair, M. (2020). Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. International Journal of Molecular Sciences, 21(17), 1–25. https://doi.org/10.3390/ijms21176127.

    Article  CAS  Google Scholar 

  39. Obulesu, M., & Lakshmi, M. J. (2014). Apoptosis in Alzheimer’s disease: An understanding of the physiology pathology and therapeutic avenues. Neurochemical Research, 39(12), 2301–2312. https://doi.org/10.1007/s11064-014-1454-4.

    Article  CAS  PubMed  Google Scholar 

  40. Islam, S. M., Sifat Rahi, M., Arif Jahangir, C., Mahmudul Hasan, M., Ahmed Sajib, S., Haque, A., Rashel Kabir, S., Md Faisal Hoque, K., Ali Moni, M., Abu Reza, M. (2021). Deciphering the molecular pathways of apoptosis using leaf extract of Basella alba against Ehrlichs Ascites Carcinoma (EAC) cell line in Swiss albino mice model. Mol Biol Rep, 48(1), 85–96. https://doi.org/10.1101/485078.

    Article  CAS  PubMed  Google Scholar 

  41. Joshi, A., Haque, N., Lateef, A., Patel, A., Patel, P. (2017) Apoptosis and Its Role in Physiology International. Journal of Livestock Research 1. https://doi.org/10.5455/ijlr20170624054330

  42. Singh, V., Khurana, A., Navik, U., Allawadhi, P., Bharani, K.K., & Weiskirchen, R. (2022) Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Science 4(2). https://doi.org/10.3390/sci4020015

  43. Chi, H., Chang, H. Y., & Sang, T. K. (2018). Neuronal cell death mechanisms in major neurodegenerative diseases. International Journal of Molecular Sciences, 19(10), 3082. https://doi.org/10.3390/ijms19103082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L., Qian, Y., Li, J., Zhou, X., Xu, H., Yan, J., Xiang, J., Yuan, X., Sun, B., Sisodia, S. S., Jiang, Y. H., Cao, X., Jing, N., & Lin, A. (2021). BAD-mediated neuronal apoptosis and neuroinflammation contribute to Alzheimer’s disease pathology. IScience, 24(9), 102942. https://doi.org/10.1016/jisci2021102942.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moujalled, D., Strasser, A., & Liddell, J. R. (2021). Molecular mechanisms of cell death in neurological diseases. Cell Death and Differentiation, 28(7), 2029–2044. https://doi.org/10.1038/s41418-021-00814-y.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Teixeira, J. P., de Castro, A. A., Soares, F. V., da Cunha, E. F. F., & Ramalho, T. C. (2019). Future therapeutic perspectives into the Alzheimer’s disease targeting the oxidative stress hypothesis. Molecules, 24(23), 4410. https://doi.org/10.3390/molecules24234410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rekatsina, M., Paladini, A., Piroli, A., Zis, P., Pergolizzi, J. V., & Varrassi, G. (2020). Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: a narrative review. Advances in therapy, 37, 113–139.

    Article  PubMed  Google Scholar 

  48. Qu, Z., Sun, J., Zhang, W., Yu, J., & Zhuang, C. (2020). Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radical Biology and Medicine, 159, 87–102. https://doi.org/10.1016/j.freeradbiomed.2020.06.028.

    Article  CAS  PubMed  Google Scholar 

  49. Uddin, M. S., al Mamun, A., Kabir, M. T., Ahmad, J., Jeandet, P., Sarwar, M. S., Ashraf, G. M., & Aleya, L. (2020). Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. European Journal of Pharmacology, 886, 173412. https://doi.org/10.1016/j.ejphar.2020.173412.

    Article  CAS  PubMed  Google Scholar 

  50. Remondelli, P., & Renna, M. (2017). The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Frontiers in Molecular Neuroscience, 10, 187. https://doi.org/10.3389/fnmol.2017.00187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ajoolabady, A., Lindholm, D., Ren, J., & Pratico, D. (2022). ER stress and UPR in Alzheimer’s disease: mechanisms, pathogenesis, treatments. In Cell Death and Disease, 13(8), 706. https://doi.org/10.1038/s41419-022-05153-5.

    Article  Google Scholar 

  52. Hedskog, L., Pinho, C. M., Filadi, R., Rönnbäck, A., Hertwig, L., Wiehager, B., Larssen, P., Gellhaar, S., Sandebring, A., Westerlund, M., Graff, C., Winblad, B., Galter, D., Behbahani, H., Pizzo, P., Glaser, E., & Ankarcrona, M. (2013). Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proceedings of the National Academy of Sciences of the United States of America, 110(19), 7916–7921. https://doi.org/10.1073/pnas.1300677110.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Li, Z., Cao, Y., Pei, H., Ma, L., Yang, Y., & Li, H. (2023). The contribution of mitochondria-associated endoplasmic reticulum membranes (MAMs) dysfunction in Alzheimer’s disease and the potential countermeasure. Frontiers in Neuroscience, 17, 1158204. https://doi.org/10.3389/fnins.2023.1158204.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schon, E. A., & Area-Gomez, E. (2013). Mitochondria-associated ER membranes in Alzheimer disease. Molecular and Cellular Neuroscience, 55, 26–36. https://doi.org/10.1016/j.mcn.2012.07.011.

    Article  CAS  PubMed  Google Scholar 

  55. Eysert, F., Kinoshita, P. F., Mary, A., Vaillant-Beuchot, L., Checler, F., & Chami, M. (2020). Molecular dysfunctions of mitochondria-associated membranes (Mams) in alzheimer’s disease. International Journal of Molecular Sciences, 21(24), 1–29. https://doi.org/10.3390/ijms21249521.

    Article  CAS  Google Scholar 

  56. Fernandes, T., Resende, R., Silva, D. F., Marques, A. P., Santos, A. E., Cardoso, S. M., Rosário Domingues, M., Moreira, P. I., & Pereira, C. F. (2021). Structural and functional alterations in mitochondria-associated membranes (Mams) and in mitochondria activate stress response mechanisms in an in vitro model of alzheimer’s disease. Biomedicines, 9(8), 881. https://doi.org/10.3390/biomedicines9080881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu, W., Jin, H., & Huang, Y. (2021). Mitochondria-associated membranes (MAMs): A potential therapeutic target for treating Alzheimer’s disease. Clinical Science, 135, 109–126. https://doi.org/10.1042/CS20200844.

    Article  CAS  PubMed  Google Scholar 

  58. Cassidy, L., Fernandez, F., Johnson, J. B., Naiker, M., Owoola, A. G., & Broszczak, D. A. (2020). Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complementary Therapies in Medicine, 49, 102294. https://doi.org/10.1016/j.ctim.2019.102294.

    Article  PubMed  Google Scholar 

  59. Hashimoto, S., & Saido, T. C. (2018). Critical review: Involvement of endoplasmic reticulum stress in the aetiology of Alzheimer’s disease. Open Biology, 8(4), 180024. https://doi.org/10.1098/rsob.180024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thenmozhi, A., William Raja, T. R., Manivasagam, T., Janakiraman, U., & Essa, M. M. (2017). Hesperidin ameliorates cognitive dysfunction oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutritional Neuroscience, 20(6), 360–368.

    Article  Google Scholar 

  61. Ekundayo, B. E., Obafemi, T. O., Afolabi, B. A., Adewale, O. B., Onasanya, A., Osukoya, O. A., & Adu, I. A. (2022). Gallic acid and hesperidin elevate neurotransmitters level and protect against oxidative stress inflammation and apoptosis in aluminum chloride-induced Alzheimer’s disease in rats. Pharmacological Research-Modern Chinese Medicine, 5, 100193.

    Article  Google Scholar 

  62. Promyo, K., Iqbal, F., Chaidee, N., & Chetsawang, B. (2020). Aluminum chloride-induced amyloid β accumulation and endoplasmic reticulum stress in rat brain are averted by melatonin. Food Chem Toxicol, 146, 111829. https://doi.org/10.1016/jfct2020111829.

    Article  CAS  PubMed  Google Scholar 

  63. Awad, H. H., Desouky, M. A., & Zidan, A. (2023). Neuromodulatory effect of vardenafil on aluminium chloride/D-galactose induced Alzheimer’s disease in rats: emphasis on amyloid-beta p-tau PI3K/Akt/p53 pathway endoplasmic reticulum stress and cellular senescence. Inflammopharmacol, 31, 2653–2673. https://doi.org/10.1007/s10787-023-01287-w.

    Article  CAS  Google Scholar 

  64. Aboelwafa, H. R., El-kott, A. F., Abd-Ella, E. M., & Yousef, H. N. (2020). The possible neuroprotective effect of silymarin against aluminum chloride-prompted Alzheimer’s-like disease in rats brain. Sci, 10, 628. https://doi.org/10.3390/brainsci10090628.

    Article  CAS  Google Scholar 

  65. Qusti, S. Y. (2017). Selenium and melatonin attenuates inflammation and oxidative stress in the brain of aged rats with aluminum chloride-induced Alzheimer. International Journal of Pharmaceutical Research Allied Sciences, 6(2), 277–289.

    CAS  Google Scholar 

  66. Abdel-Salam, O. M., Hamdy, S. M., Seadawy, S. A. M., Galal, A. F., Abouelfadl, D. M., & Atrees, S. S. (2016). Effect of piracetam vincamine vinpocetine and donepezil on oxidative stress and neurodegeneration induced by aluminum chloride in rats. Comparative Clinical Pathology, 25, 305–318.

    Article  CAS  Google Scholar 

  67. Ahmad Rather, M., Justin-Thenmozhi, A., & Manivasagam, T. (2019). Asiatic acid attenuated aluminum chloride-induced tau pathology oxidative stress and apoptosis Via AKT/GSK-3β signalling pathway in wistar rats. Neurotox Res, 35, 955–968. https://doi.org/10.1007/s12640-019-9999-2.

    Article  CAS  PubMed  Google Scholar 

  68. Liu, B. Y., Lee, Y. J., Jen, H. C., & Hwang, D. F. (2019). Efficacy of taurine against aluminum maltolate-induced apoptosis in SH-SY5Y cells via reduction of oxidative stress endoplasmic reticulum stress and mitochondrial dysfunction. Journal of Marine Science and Technology, 27(1), 8.

    ADS  Google Scholar 

  69. Chen, X., Zhang, M., Ahmed, M., Surapaneni, K. M., Veeraraghavan, V. P., & Arulselvan, P. (2021). Neuroprotective effects of ononin against the aluminium chloride-induced Alzheimer’s disease in rats. Saudi Journal of Biological Sciences, 28(8), 4232–4239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao, Y., Dang, M., Zhang, W., Lei, Y., Ramesh, T., Veeraraghavan, V. P., & Hou, X. (2020). Neuroprotective effects of Syringic acid against aluminium chloride induced oxidative stress mediated neuroinflammation in rat model of Alzheimer’s disease. Journal of Functional Foods, 71, 104009.

    Article  CAS  Google Scholar 

  71. Raj, K., Gupta, G. D., & Singh, S. (2021). Spermine protects aluminium chloride and iron-induced neurotoxicity in rat model of Alzheimer’s disease via attenuation of tau phosphorylation Amyloid-β (1–42) and NF-κB pathway. Inflammopharmacol, 29, 1777–1793. https://doi.org/10.1007/s10787-021-00883-y.

    Article  CAS  Google Scholar 

  72. Chavali, V. D., Agarwal, M., & Vyas, V. K. (2020). Neuroprotective effects of ethyl pyruvate against aluminum chloride-induced Alzheimer’s disease in rats via inhibiting toll-like receptor 4. J Mol Neurosci, 70, 836–850. https://doi.org/10.1007/s12031-020-01489-9.

    Article  CAS  PubMed  Google Scholar 

  73. Attia, H., Albuhayri, S., Alaraidh, S., Alotaibi, A., Yacoub, H., Mohamad, R., & Al‐Amin, M. (2020). Biotin coenzyme Q10 and their combination ameliorate aluminium chloride‐induced Alzheimer’s disease via attenuating neuroinflammation and improving brain insulin signalling. Journal of Biochemical and Molecular Toxicology, 34(9), e22519.

    Article  CAS  PubMed  Google Scholar 

  74. Anand, A., Khurana, N., Kaur, S., Ali, N., AlAsmari, A. F., Waseem, M., & Sharma, N. (2023). The multifactorial role of vanillin in amelioration of aluminium chloride and D-galactose induced Alzheimer’s disease in mice. European Journal of Pharmacology, 954, 175832. https://doi.org/10.1016/j.ejphar.2023.175832.

    Article  CAS  PubMed  Google Scholar 

  75. Prakash, D., & Sudhandiran, G. (2015). Dietary flavonoid fisetin regulates aluminium chloride-induced neuronal apoptosis in cortex and hippocampus of mice brain. The Journal of nutritional biochemistry, 26(12), 1527–1539.

    Article  CAS  PubMed  Google Scholar 

Download references

Author Contributions

All authors contributed equally to the writing, proof reading, correction and preparation of the draft and final copy of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidemi Emmanuel Ekundayo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Consent for Publication

Authors give their consent for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekundayo, B.E., Obafemi, T.O., Adewale, O.B. et al. Oxidative Stress, Endoplasmic Reticulum Stress and Apoptosis in the Pathology of Alzheimer’s Disease. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01248-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01248-2

Keywords

Navigation