Skip to main content
Log in

Mechanisms of failure of aluminium-based Whipple shields under hypervelocity impact: insights from continuum simulations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Micrometeoroids and Orbital Debris (MMOD) travelling at extremely high velocities in space are a threat to the structural integrity of spacecrafts in the Low Earth Orbit. Whipple shield, consisting of a Bumper and a Rear Wall, with a stand-off distance in between, is widely used to protect spacecrafts from hypervelocity MMOD impacts. In this paper, we present numerical simulations of a set of well-known hypervelocity impact (HVI) experiments on aluminium-based Whipple shields reported in the literature. These simulations are conducted using the three-dimensional Lagrangian Finite Element Method in ABAQUS/Explicit software. In six out of the seven tests reported in the literature, the Whipple shield failed due to a detached spall from the back surface of the Rear Wall, while in the seventh test, the spall was not detached. The present work successfully replicates and favourably compares the failure mechanisms observed in these Whipple shields to the corresponding experimental results. Various critical aspects of the Whipple shield’s failure mechanics and mechanisms are investigated. These include impact pressure on the projectile, Bumper and Rear Wall, Bumper hole diameter, temperature rise, and residual velocity of debris particles and spalled fragments. The predicted ballistic limit of the Whipple shield falls between 2.54 mm and 3.18 mm of Rear Wall thickness in excellent agreement with the experimental results reported in the literature. The present work provides valuable insights into Whipple shield performance. The developed methodology could be employed to optimize shield design through predictive simulations, thereby improving spacecraft protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Limiting Future Collision Risk to Spacecraft: National Academies Press (2011). https://doi.org/10.17226/13244

  2. Whipple, F.L.: Meteorites and space travel. Astron. J. 52, 131 (1947). https://doi.org/10.1086/106009

    Article  ADS  Google Scholar 

  3. Zukas, J.A.: High Velocity Impact Dynamics. Wiley-Interscience, New York (1990)

    Google Scholar 

  4. Meng, S., Taddei, L., Lebaal, N., Roth, S.: Advances in ballistic penetrating impact simulations on thin structures using smooth particles hydrodynamics: a state of the art. Thin-Walled Struct. 159, 107206 (2021). https://doi.org/10.1016/j.tws.2020.107206

    Article  Google Scholar 

  5. Wen, K., Chen, X.-W., Lu, Y.-g: Research and development on hypervelocity impact protection using whipple shield: an overview. Defence Technol. 17(6), 1864–1886 (2021). https://doi.org/10.1016/j.dt.2020.11.005

    Article  Google Scholar 

  6. Doolan, C.J.: A two-stage light gas gun for the study of high speed impact in propellants. Technical report (2001). https://api.semanticscholar.org/CorpusID:108181892

  7. Verma, P.N., Dhote, K.D.: Characterising primary fragment in debris cloud formed by hypervelocity impact of spherical stainless steel projectile on thin steel plate. Int. J. Impact Eng 120, 118–125 (2018). https://doi.org/10.1016/j.ijimpeng.2018.05.003

    Article  Google Scholar 

  8. Seisson, G., Hébert, D., Bertron, I., Chevalier, J.-M., Hallo, L., Lescoute, E., Videau, L., Combis, P., Guillet, F., Boustie, M., Berthe, L.: Dynamic cratering of graphite: experimental results and simulations. Int. J. Impact Eng. 63, 18–28 (2014). https://doi.org/10.1016/j.ijimpeng.2013.08.001

    Article  Google Scholar 

  9. Christiansen, E.L., Kerr, J.H.: Projectile shape effects on shielding performance at 7 km/s and 11 km/s. Int. J. Impact Eng. 20(1), 165–172 (1997). https://doi.org/10.1016/S0734-743X(97)87490-8. (Hypervelocity Impact Proceedings of the 1996 Symposium)

    Article  Google Scholar 

  10. Schonberg, W.P., Williamsen, J.E.: RCS-based ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft systems. Int. J. Impact Eng. 33(1), 763–770 (2006). https://doi.org/10.1016/j.ijimpeng.2006.09.076. (Hypervelocity Impact Proceedings of the 2005 Symposium)

    Article  Google Scholar 

  11. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17(1), 25–76 (2010). https://doi.org/10.1007/s11831-010-9040-7

    Article  MathSciNet  CAS  Google Scholar 

  12. Zhang, X.-T., Li, X.-G., Liu, T., Jia, G.-h: Element fracture technique for hypervelocity impact simulation. Adv. Space Res. 55(9), 2293–2304 (2015). https://doi.org/10.1016/j.asr.2015.01.040

    Article  ADS  Google Scholar 

  13. Horner, J.K.: A comparison of ballistic limit with adaptive-mesh Eulerian hydrocode predictions of one- and two-plate aluminum shielding protection against millimeter-sized Fe–Ni space debris. Int. J. Impact Eng. 35(12), 1602–1605 (2008). https://doi.org/10.1016/j.ijimpeng.2008.07.039. (Hypervelocity Impact Proceedings of the 2007 Symposium)

    Article  Google Scholar 

  14. Pezzica, G., Destefanis, R., Faraud, M.: Numerical simulation of orbital debris impact on spacecraft. WIT Trans. Built Environ. 25, 10 (1970)

    Google Scholar 

  15. Katayama, M., Kibe, S., Toda, S.: A numerical simulation method and its validation for debris impact against the Whipple bumper shield. Int. J. Impact Eng. 17(4–6), 465–476 (1995). https://doi.org/10.1016/0734-743x(95)99871-n

    Article  Google Scholar 

  16. Katayama, M., Toda, S., Kibe, S.: Numerical simulation of space debris impacts on the Whipple shield. Acta Astronaut. 40(12), 859–869 (1997). https://doi.org/10.1016/s0094-5765(97)00128-8

    Article  ADS  Google Scholar 

  17. Fahrenthold, E.P.: Oblique hypervelocity impact simulation for Whipple shield-protected structures. Int. J. Impact Eng. 17(1–3), 291–302 (1995). https://doi.org/10.1016/0734-743x(95)99855-l

    Article  Google Scholar 

  18. Fahrenthold, E.P., Yew, C.H.: Hydrocode simulation of hypervelocity impact fragmentation. Int. J. Impact Eng. 17(1–3), 303–310 (1995). https://doi.org/10.1016/0734-743x(95)99856-m

    Article  Google Scholar 

  19. Kerr, J.H., Fahrenthold, E.P.: Three dimensional hypervelocity impact simulation for orbital debris shield design. Int. J. Impact Eng. 20(6–10), 479–489 (1997). https://doi.org/10.1016/s0734-743x(97)87436-2

    Article  Google Scholar 

  20. Bashurov, V.V., Bebenin, G.V., Belov, G.V., Bukharev, Y.N., Zhukov, V.I., Ioilev, A.G., Lapichev, N.V., Mikhailov, A.L., Smirnov, G.S., Fateev, Y.A., Schlyapnikov, G.P.: Experimental modelling and numerical simulation of high- and hypervelocity space debris impact to spacecraft shield protection. Int. J. Impact Eng. 20(1–5), 69–78 (1997). https://doi.org/10.1016/s0734-743x(97)87480-5

    Article  Google Scholar 

  21. Faraud, M., Destefanis, R., Palmieri, D., Marchetti, M.: SPH simulations of debris impacts using two different computer codes. Int. J. Impact Eng. 23(1), 249–260 (1999). https://doi.org/10.1016/s0734-743x(99)00077-9

    Article  Google Scholar 

  22. Fahrenthold, E.P., Horban, B.A.: A hybrid particle-finite element method for hypervelocity impact simulation. Int. J. Impact Eng. 23(1), 237–248 (1999). https://doi.org/10.1016/s0734-743x(99)00076-7

    Article  Google Scholar 

  23. Rabb, R.J., Fahrenthold, E.P.: Numerical simulation of oblique impact on orbital debris shielding. Int. J. Impact Eng. 23(1), 735–744 (1999). https://doi.org/10.1016/s0734-743x(99)00118-9

    Article  Google Scholar 

  24. Beissel, S.R., Gerlach, C.A., Johnson, G.R.: Hypervelocity impact computations with finite elements and meshfree particles. Int. J. Impact Eng. 33(1–12), 80–90 (2006). https://doi.org/10.1016/j.ijimpeng.2006.09.047

    Article  Google Scholar 

  25. Silnikov, M.V., Guk, I.V., Nechunaev, A.F., Smirnov, N.N.: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements. Acta Astronaut. 150, 56–62 (2018). https://doi.org/10.1016/j.actaastro.2017.08.030

    Article  ADS  Google Scholar 

  26. Ryan, S., Christiansen, E.L.: Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding. Acta Astronaut. 83, 216–231 (2013). https://doi.org/10.1016/j.actaastro.2012.09.012

    Article  CAS  ADS  Google Scholar 

  27. Aluminum Alloy, Tubing, Hydraulic (6062 T6). SAE International. https://doi.org/10.4271/ams4093a

  28. Rao, C.L., Narayanamurthy, V., Simha, K.: Applied Impact Mechanics. Wiley, New York (2016)

    Book  Google Scholar 

  29. Lindholm, U.S., Johnson, G.R.: Strain-rate effects in metals at large shear strains. In: Material Behavior Under High Stress and Ultrahigh Loading Rates, pp. 61–79 (1983). https://doi.org/10.1007/978-1-4613-3787-4_4

  30. Jog, C.S.: Continuum mechanics: Volume 1: Foundations and applications of mechanics. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  31. ABAQUS: Version 6.14. Abaqus/Standard User’s Manual, DASSAULT SYSTEMES, Simulia Inc. (2014)

  32. Hiermaier, S.: Structures Under Crash and Impact. Springer, New York (2008). https://doi.org/10.1007/978-0-387-73863-5

    Book  Google Scholar 

  33. Johnson, G.R.: A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, pp. 541–547 (1983)

  34. Systèmes, D.: Simulation of the ballistic perforation of aluminum plates with abaqus/explicit, abaqus technology brief. DASSAULT SYSTÈMES, Waltham, MA (2012)

  35. Leseur, D.: Experimental investigations of material models for Ti–6A1–4V and 2024-t3. Technical Report (1999). https://doi.org/10.2172/11977

  36. Abdelal, G.F., Georgiou, G., Cooper, J., Murphy, A., Robotham, A., Lunt, P.: Investigation of aircraft panel deformations during riveting process. In: 4th Aircraft Structural Design Conference (2014)

  37. Steinberg, D., et al.: Equation of state and strength properties of selected materials. Lawrence Livermore National Laboratory Livermore (1996)

  38. Kay, G.: Failure modeling of titanium-6al-4v and 2024-t3 aluminum with the Johnson–Cook material model (2002). https://doi.org/10.2172/15006359

  39. Salvador, M.D.M.: Hypervelocity impact of spherical aluminum 2017-t4 projectiles on aluminum 6061-t6 multi-layered sheets. Mississippi State University (2017)

  40. Meyers, M.A.: Dynamic Behavior of Materials. Wiley, New York (1994)

    Book  Google Scholar 

  41. Antoun, T., Seaman, L., Curran, D.R., Kanel, G.I., Razorenov, S.V., Utkin, A.V.: Spall Fracture. Springer, Berlin (2003)

    Google Scholar 

  42. Dorogoy, A., Rittel, D., Weihs, D.: Effect of target velocity on damage patterns in hypervelocity glancing collisions. Int. J. Impact Eng. 144, 103664 (2020). https://doi.org/10.1016/j.ijimpeng.2020.103664

    Article  Google Scholar 

  43. Vigil, M.G.: Projectile impact hugoniot parameters for selected materials. Technical Report (1989). https://doi.org/10.2172/5658829

  44. Hatami, H., Hosseini, M., Yasuri, A.K.: Perforation of thin aluminum targets under hypervelocity impact of aluminum spherical projectiles. Mater. Eval. 77(3), 411–422 (2019)

    Google Scholar 

  45. Christiansen, E.L., Kerr, J.H.: Ballistic limit equations for spacecraft shielding. Int. J. Impact Eng. 26(1–10), 93–104 (2001). https://doi.org/10.1016/s0734-743x(01)00070-7

    Article  Google Scholar 

  46. Piekutowski, A.J., Poormon, K.L., Christiansen, E.L., Davis, B.A.: Performance of Whipple shields at impact velocities above 9km/s. Int. J. Impact Eng. 38(6), 495–503 (2011). https://doi.org/10.1016/j.ijimpeng.2010.10.021

    Article  Google Scholar 

  47. Rotz, J.: Evaluation of tornado missile impact effects on structures. In: Proceedings of a Symposium on Tornadoes, Assessment of Knowledge and Implications for Man. Texas Technical University, Lubbock, TX (1976)

  48. Nuttall, A., Close, S.: A thermodynamic analysis of hypervelocity impacts on metals. Int. J. Impact Eng. 144, 103645 (2020). https://doi.org/10.1016/j.ijimpeng.2020.103645

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by ISRO-IITB Space Technology Cell for this research through a sponsored project with code RD/0119-ISROC00-010. The authors would like to thank Dr. Rajeev Chaturvedi of ISRO for bringing Reference [26] to their attention and for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Tandaiya.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, A., Tandaiya, P. Mechanisms of failure of aluminium-based Whipple shields under hypervelocity impact: insights from continuum simulations. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03898-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03898-y

Navigation