Skip to main content
Log in

On the generalized flexothermoelasticity of a microlayer

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present work attempts to develop the Lord–Shulman (LS) generalized thermoelasticity for flexoelectric materials. To do this, the energy equation and entropy inequality were developed so that all energy components were included as well. The relation between heat flux and temperature was considered as LS assumption and in the same manner as LS theory, and the final forms of constitutive relations and heat conduction equation were extracted. Then by putting the extracted constitutive relations into the dynamic equations of flexoelasticity, the final dynamic governing generalized equations of thermo-flexoelasticity based on LS thermoelasticity model were derived. The generalized thermo-flexoelasticity equations were extracted in the present work for the first time and can be applied to general flexoelectric materials. The derived thermo-flexoelasticity equations showed new couplings between polarization and temperature and also between heat conduction equation and polarization, in such a way that by putting the LS relaxation time equal to zero, the developed generalized thermo-flexoelasticity model was reduced to classical equations of flexoelasticity with thermal effects. As a case study, a one-dimensional flexoelectric layer was considered and the generalized governing thermo-flexoelasticity equations were derived. Finally, a consistent finite element approach was employed to solve the governing equations. The results under both temperature and traction shock loading were also presented. The numerical results showed that all thermal, elastic, and electrical parameters propagated as waves with finite speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74(1), 014110 (2006)

    Article  ADS  Google Scholar 

  2. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)

    Article  ADS  Google Scholar 

  3. Fu, J.Y., Zhu, W.Y., Li, N., Cross, L.E.: Experimental studies of the converse flexoelectric effect induced by the inhomogeneous electric field in a barium strontium titanate composition. J. Appl. Phys. 100(2), 024112 (2006). https://doi.org/10.1063/1.2219990

    Article  ADS  CAS  Google Scholar 

  4. Ma, W.: A study of flexoelectric coupling associated internal electric field and stress in thin film ferroelectrics. Physica Status Solidi (b) 245(4), 761–768 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Hetnarski, R.B., Eslami, M.R., Gladwell, G.M.L.: Thermal stresses: advanced theory and applications (2009)

  6. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  ADS  Google Scholar 

  7. Othman, M.I., Fekry, M., Marin, M.: Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating. Struct. Eng. Mech. 73(6), 621–629 (2020). https://doi.org/10.12989/sem.2020.73.6.621

    Article  Google Scholar 

  8. Abbas, I., Hobiny, A., Marin, M.: Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J. Taibah Univ. Sci. 14, 1369–1376 (2020). https://doi.org/10.1080/16583655.2020.1824465

    Article  Google Scholar 

  9. Abouelregal, A.E., Mohammad-Sedighi, H., Shirazi, A.H., Malikan, M., Eremeyev, V.A.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. Contin. Mech. Thermodyn. 34(4), 1067–1085 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  10. Singh, B.: On the theory of generalized thermoelasticity for piezoelectric materials. Appl. Math. Comput. 171, 398–405 (2005)

    MathSciNet  Google Scholar 

  11. Jabbari, M., Yooshi, A.: Theory of generalized piezoporo thermoelasticity. J. Solid Mech. 4(4), 327–338 (2012)

    Google Scholar 

  12. Ma, Y., He, T.: Dynamic response of a generalized piezoelectric-thermoelastic problem under fractional order theory of thermoelasticity. Mech. Adv. Mater. Struct. 23(10), 1173–1180 (2016). https://doi.org/10.1080/15376494.2015.1068397

    Article  CAS  Google Scholar 

  13. Ma, Y., He, T.: the transient response of a functionally graded piezoelectric rod subjected to a moving heat source under fractional order theory of thermoelasticity. Mech. Adv. Mater. Struct. 24(9), 789–796 (2017)

    Article  Google Scholar 

  14. Taghizadeh, A., Kiani, Y.: Generalized thermoelasticity of a piezoelectric layer. J. Therm. Stress. 42, 863–873 (2019)

    Article  Google Scholar 

  15. Marin, M., Abouelregal, A., Mohamed, B.: The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod. (2023) https://doi.org/10.21203/rs.3.rs-2750537/v1

  16. Samani, M.S.E., Beni, Y.T.: Size dependent thermo-mechanical buckling of the flexoelectric nanobeam. Mater. Res. Expr. 5(8), 085018 (2018). https://doi.org/10.1088/2053-1591/aad2ca

    Article  ADS  CAS  Google Scholar 

  17. Jani, S.M.H., Kiani, Y.: Generalized thermo-electro-elasticity of a piezoelectric disk using Lord-Shulman theory. J. Therm. Stress. (2020). https://doi.org/10.1080/01495739.2020.1718044

    Article  Google Scholar 

  18. Jani, S.M.H., Kiani, Y.: Symmetric thermo-electro-elastic response of piezoelectric hollow cylinder under thermal shock using lord-shulman theory. Int. J. Struct. Stab. Dyn. (2020). https://doi.org/10.1142/S0219455420500595

    Article  MathSciNet  Google Scholar 

  19. Bazarra, N., Fernández, J., Quintanilla, R.: Lord-Shulman thermoelasticity with microtemperatures. Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-020-09691-2

    Article  Google Scholar 

  20. Ghobadi, A., Golestanian, H., Beni, Y.T., Żur, K.K.: On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate. Commun. Nonlinear Sci. Numer. Simul. 95, 105585 (2021). https://doi.org/10.1016/j.cnsns.2020.105585

    Article  MathSciNet  Google Scholar 

  21. Beni, Y.T.: Size dependent torsional electro-mechanical analysis of flexoelectric micro/nanotubes. Eur. J. Mech. A/Solids 95, 104648 (2022)

    Article  MathSciNet  Google Scholar 

  22. Babadi, A.F., Beni, Y.T., Żur, K.K.: On the flexoelectric effect on size-dependent static and free vibration responses of functionally graded piezo-flexoelectric cylindrical shells. Thin-Walled Struct. 179, 109699 (2022)

    Article  Google Scholar 

  23. Ragab, M., Abo-Dahab, S.M., Abouelregal, A.E., Kilany, A.A.: A thermoelastic piezoelectric fixed rod exposed to an axial moving heat source via a dual-phase-lag model. Complexity 2021, 1–11 (2021). https://doi.org/10.1155/2021/5547566

    Article  Google Scholar 

  24. Hosseini, S.M.H., Beni, Y.T.: Free vibration analysis of rotating piezoelectric/flexoelectric microbeams. Appl. Phys. A 129, 330 (2023). https://doi.org/10.1007/s00339-023-06615-z

    Article  ADS  CAS  Google Scholar 

  25. Hosseini, S.M.H., Beni, Y.T.: On the vibration of size-dependent rotating flexoelectric microbeams. Appl. Phys. A 130, 58 (2024). https://doi.org/10.1007/s00339-023-07207-7

    Article  ADS  CAS  Google Scholar 

  26. Ghobadi, A., Beni, Y.T., Golestanian, H.: Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field. Arch. Appl. Mech. 90, 2025–2070 (2020). https://doi.org/10.1007/s00419-020-01708-0

    Article  ADS  Google Scholar 

  27. Abouelregal, A.E., Askar, S.S., Marin, M., Mohamed, B.: The theory of thermoelasticity with a memory-dependent dynamic response for a thermo-piezoelectric functionally graded rotating rod. Sci. Rep. 13(1), 9052 (2023). https://doi.org/10.1038/s41598-023-36371-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abdoul-Anziz, H., Auffray, N., Desmorat, B.: Symmetry classes and matrix representations of the 2D flexoelectric law. Symmetry 12(4), 674 (2020)

    Article  ADS  Google Scholar 

  29. Guinovart-Sanjuán, D., Mohapatra, R., Rodríguez-Ramos, R., Espinosa-Almeyda, Y., Rodríguez-Bermúdez, P.: Influence of nonlocal elasticity tensor and flexoelectricity in a rod: an asymptotic homogenization approach. Int. J. Eng. Sci. 193, 103960 (2023). https://doi.org/10.1016/j.ijengsci.2023.103960

    Article  MathSciNet  Google Scholar 

  30. Yurkov, A.S., Yudin, P.V.: Continuum model for converse flexoelectricity in a thin plate. Int. J. Eng. Sci. 182, 103771 (2023)

    Article  MathSciNet  Google Scholar 

  31. Malikan, M., Dastjerdi, S., Eremeyev, V., Sedighi, H.M.: On a 3D material modelling of smart nanocomposite structures. Int. J. Eng. Sci. 193(2023), 103966 (2023)

    Article  MathSciNet  Google Scholar 

  32. Malikan, M., Eremeyev, V.A.: On a flexomagnetic behavior of composite structures. Int. J. Eng. Sci. 175, 103671 (2022)

    Article  MathSciNet  Google Scholar 

  33. Malikan, M., Eremeyev, V.A.: On dynamic modeling of piezomagnetic/flexomagnetic microstructures based on Lord-Shulman thermoelastic model. Arch. Appl. Mech. 93, 181–196 (2023). https://doi.org/10.1007/s00419-022-02149-7

    Article  ADS  Google Scholar 

  34. Beni, Y.T.: Size-dependent electro-thermal buckling analysis of flexoelectric microbeams. Int. J. Struct. Stab. Dyn. (2023). https://doi.org/10.1142/S0219455424500937

    Article  Google Scholar 

  35. Tadi Beni, Y.: Size dependent coupled electromechanical torsional analysis of porous FG flexoelectric micro/nanotubes. Mech. Syst. Signal Process. 178(2022), 109281 (2022)

    Article  Google Scholar 

  36. Alihemmati, J., Beni, Y.T.: Generalized thermoelasticity of microstructures: Lord-Shulman theory with modified strain gradient theory. Mech. Mater. 172, 104412 (2022)

    Article  Google Scholar 

  37. Li, A., Zhou, S., Qi, L., Chen, X.: A reformulated flexoelectric theory for isotropic dielectrics. J. Phys. D Appl. Phys. 48(46), 465502 (2015)

    Article  ADS  Google Scholar 

  38. Truesdell, C., Noll, W.: The non-linear field theories of mechanics, Encyclopedia of Physics, Vol. III/3, Springer, Berlin (1965)

  39. Awad, E., El Dhaba, A.R., Fayik, M.: A unified model for the dynamical flexoelectric effect in isotropic dielectric materials. Eur. J. Mech. A. Solids 95, 104618 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  40. Segerlind, L.J.: Applied Finite Element Analysis. Wiley (1991)

    Google Scholar 

  41. Rao, S.S.: Mechanical Vibrations, 6th edition, Pearson, (2016)

  42. Alihemmati, J., Tadi Beni, Y., Kiani, Y.: Application of chebyshev collocation method to unified generalized thermoelasticity of a finite domain. J. Therm. Stress. 44(5), 547–565 (2021). https://doi.org/10.1080/01495739.2020.1867941

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheibari, F., Beni, Y.T. & Golestanian, H. On the generalized flexothermoelasticity of a microlayer. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03884-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03884-4

Navigation