Skip to main content
Log in

An electron-transfer [Fe2Co2] square complex exhibiting unprecedented wide room-temperature hysteresis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Switchable molecules with magnetic bistability that can function at standard conditions are highly desirable from the perspective of practical applications. Over the last decade, significant progress has been made in modulating thermally induced electron-transfer-coupled spin transition (ETCST) events between diamagnetic {FeIILS(μ-CN)CoIIILS} and paramagnetic {FeLS(μ-CN)-CoIIHS} electron configurations (named LS and HS, respectively, for short) within the Fe/Co mixed-valence cyanometallate complexes. Herein, we prepared a novel [Fe2Co2] square complex [(pzTp)Fe(CN)3Co(bnbpen)]2[NO3]2·4CH3OH·2.5H2O (1·Solv) and its desolvated phase [(pzTp)Fe(CN)3Co(bnbpen)]2[NO3]2 (1), obtained via single-crystal-to-single-crystal (SCSC) transformation. Complex 1·Solv remaining in the diamagnetic state below room temperature exhibits an irreversible ETCST behavior accompanied by desolvation upon heating. Notably, complex 1 displays an unprecedented rate-dependent ETCST behaviour involving with two diamagnetic LS states (a dynamically favoured LS1 state and a thermodynamically favoured LS2 state), between which a net one-way transition from LS1 to LS2 is accessible likely via a structural phase transition (SPT) above 255 K. Consequently, two well separated transition channels (HS ↔ LS1 at around 255 K and HS ↔ LS2 in the temperature range of 317–350 K) are achieved according to either fast (> 20 K/min) or slow rate (< 1 K/min), respectively. At a moderate rate of 3 K/min, complex 1 shows a wide hysteresis of 66 K centered at 328 K, the largest yet reported for discrete Fe/Co cyanometallate complexes. Complex 1 represents the first ETCST example coupled with dynamic SPT, providing a new strategy for manipulating bistability within this fascinating cyanometallate family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sato O. Nat Chem, 2016, 8: 644–656

    Article  CAS  PubMed  Google Scholar 

  2. Kahn O, Martinez CJ. Science, 1998, 279: 44–48

    Article  CAS  Google Scholar 

  3. Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A. Adv Mater, 2018, 30

  4. Halcrow MA. Spin Crossover Materials: Properties and Applications. New York: John Wiley & Sons, 2013

    Book  Google Scholar 

  5. Bousseksou A, Molnâr G, Salmon L, Nicolazzi W. Chem Soc Rev, 2011, 40: 3313–3335

    Article  CAS  PubMed  Google Scholar 

  6. Wu SG, Wang LF, Ruan ZY, Du SN, Gómez-Coca S, Ni ZP, Ruiz E, Chen XM, Tong ML. J Am Chem Soc, 2022, 144: 14888–14896

    Article  CAS  PubMed  Google Scholar 

  7. Tezgerevska T, Alley KG, Boskovic C. Coord Chem Rev, 2014, 268: 23–40

    Article  CAS  Google Scholar 

  8. DeGayner JA, Wang K, Harris TD. J Am Chem Soc, 2018, 140: 6550–6553

    Article  CAS  PubMed  Google Scholar 

  9. Wu SQ, Liu M, Gao K, Kanegawa S, Horie Y, Aoyama G, Okajima H, Sakamoto A, Baker ML, Huzan MS, Bencok P, Abe T, Shiota Y, Yoshizawa K, Xu W, Kou HZ, Sato O. Nat Commun, 2020, 11: 1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohkoshi S, Tokoro H. Acc Chem Res, 2012, 45: 1749–1758

    Article  CAS  PubMed  Google Scholar 

  11. Mathonière C. Eur J Inorg Chem, 2018, 2018: 248–258

    Article  Google Scholar 

  12. Meng YS, Sato O, Liu T. Angew Chem Int Ed, 2018, 57: 12216–12226

    Article  CAS  Google Scholar 

  13. Phan H, Benjamin SM, Steven E, Brooks JS, Shatruk M. Angew Chem Int Ed, 2015, 54: 823–827

    Article  CAS  Google Scholar 

  14. Wang M, Li ZY, Ishikawa R, Yamashita M. Coord Chem Rev, 2021, 435: 213819

    Article  CAS  Google Scholar 

  15. Lavrenova LG, Shakirova OG. Eur J Inorg Chem, 2012, 2013: 670–682

    Article  Google Scholar 

  16. Resines-Urien E, Fernandez-Bartolome E, Martinez-Martinez A, Gamonal A, Piñeiro-López L, Costa JS. Chem Soc Rev, 2023, 52: 705–727

    Article  CAS  PubMed  Google Scholar 

  17. Reed DA, Keitz BK, Oktawiec J, Mason JA, Runčevski T, Xiao DJ, Darago LE, Crocellà V, Bordiga S, Long JR. Nature, 2017, 550: 96–100

    Article  CAS  PubMed  Google Scholar 

  18. Sun HY, Meng YS, Zhao L, Yao NT, Mao PD, Liu Q, Yan FF, Oshio H, Liu T. Angew Chem Int Ed, 2023, 62: e202302815

    Article  CAS  Google Scholar 

  19. Wang CF, Li RF, Chen XY, Wei RJ, Zheng LS, Tao J. Angew Chem Int Ed, 2015, 54: 1574–1577

    Article  CAS  Google Scholar 

  20. Lochenie C, Schötz K, Panzer F, Kurz H, Maier B, Puchtler F, Agarwal S, Köhler A, Weber B. J Am Chem Soc, 2018, 140: 700–709

    Article  CAS  PubMed  Google Scholar 

  21. Ge JY, Chen Z, Zhang L, Liang X, Su J, Kurmoo M, Zuo JL. Angew Chem Int Ed, 2019, 58: 8789–8793

    Article  CAS  Google Scholar 

  22. Jornet-Mollá V, Duan Y, Giménez-Saiz C, Tang YY, Li PF, Romero FM, Xiong RG. Angew Chem Int Ed, 2017, 56: 14052–14056

    Article  Google Scholar 

  23. Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy LF, Hayami S. Angew Chem Int Ed, 2021, 60: 12717–12722

    Article  CAS  Google Scholar 

  24. Sato O, Iyoda T, Fujishima A, Hashimoto K. Science, 1996, 272: 704–705

    Article  CAS  PubMed  Google Scholar 

  25. Mondal A, Li Y, Seuleiman M, Julve M, Toupet L, Buron-Le Cointe M, Lescouëzec R. J Am Chem Soc, 2013, 135: 1653–1656

    Article  CAS  PubMed  Google Scholar 

  26. Aguilà D, Prado Y, Koumousi ES, Mathonière C, Clérac R. Chem Soc Rev, 2016, 45: 203–224

    Article  PubMed  Google Scholar 

  27. Cammarata M, Zerdane S, Balducci L, Azzolina G, Mazerat S, Exertier C, Trabuco M, Levantino M, Alonso-Mori R, Glownia JM, Song S, Catala L, Mallah T, Matar SF, Collet E. Nat Chem, 2021, 13: 10–14

    Article  CAS  PubMed  Google Scholar 

  28. Berlinguette CP, Dragulescu-Andrasi A, Sieber A, Galán-Mascarós JR, Güdel HU, Achim C, Dunbar KR. J Am Chem Soc, 2004, 126: 6222–6223

    Article  CAS  PubMed  Google Scholar 

  29. Li D, Clérac R, Roubeau O, Harté E, Mathonière C, Le Bris R, Holmes SM. J Am Chem Soc, 2008, 130: 252–258

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Li D, Clérac R, Kalisz M, Mathonière C, Holmes S. Angew Chem Int Ed, 2010, 49: 3752–3756

    Article  CAS  Google Scholar 

  31. Jafri SF, Koumousi ES, Arrio MA, Juhin A, Mitcov D, Rouzières M, Dechambenoit P, Li D, Otero E, Wilhelm F, Rogalev A, Joly L, Kappler JP, Cartier dit Moulin C, Mathonière C, Clérac R, Sainctavit P. J Am Chem Soc, 2019, 141: 3470–3479

    Article  CAS  PubMed  Google Scholar 

  32. Nihei M, Sekine Y, Suganami N, Nakazawa K, Nakao A, Nakao H, Murakami Y, Oshio H. J Am Chem Soc, 2011, 133: 3592–3600

    Article  CAS  PubMed  Google Scholar 

  33. Zhang YZ, Ferko P, Siretanu D, Ababei R, Rath NP, Shaw MJ, Clérac R, Mathonière C, Holmes SM. J Am Chem Soc, 2014, 136: 16854–16864

    Article  CAS  PubMed  Google Scholar 

  34. Nihei M, Yanai Y, Hsu IJ, Sekine Y, Oshio H. Angew Chem Int Ed, 2017, 56: 591–594

    Article  CAS  Google Scholar 

  35. Jiao CQ, Meng YS, Yu Y, Jiang WJ, Wen W, Oshio H, Luo Y, Duan CY, Liu T. Angew Chem Int Ed, 2019, 58: 17009–17015

    Article  CAS  Google Scholar 

  36. Tokoro H, Ohkoshi S, Matsuda T, Hashimoto K. Inorg Chem, 2004, 43: 5231–5236

    Article  CAS  PubMed  Google Scholar 

  37. Yadav J, Mondal DJ, Konar S. Chem Commun, 2021, 57: 5925–5928

    Article  CAS  Google Scholar 

  38. Krober J, Codjovi E, Kahn O, Groliere F, Jay C. J Am Chem Soc, 1993, 115: 9810–9811

    Article  CAS  Google Scholar 

  39. Weber B, Bauer W, Obel J. Angew Chem Int Ed, 2008, 47: 10098–10101

    Article  CAS  Google Scholar 

  40. Brooker S. Chem Soc Rev, 2015, 44: 2880–2892

    Article  CAS  PubMed  Google Scholar 

  41. Seredyuk M, Znovjyak K, Valverde-Muñoz FJ, da Silva I, Muñoz MC, Moroz YS, Real JA. J Am Chem Soc, 2022, 144: 14297–14309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ndiaye MM, Pillet S, Bendeif EE, Marchivie M, Chastanet G, Boukheddaden K, Triki S. Eur J Inorg Chem, 2017, 2018: 305–313

    Article  Google Scholar 

  43. Ye YS, Chen XQ, De Cai Y, Fei B, Dechambenoit P, Rouzières M, Mathonière C, Clérac R, Bao X. Angew Chem Int Ed, 2019, 58: 18888–18891

    Article  CAS  Google Scholar 

  44. Hayami S, Shigeyoshi Y, Akita M, Inoue K, Kato K, Osaka K, Takata M, Kawajiri R, Mitani T, Maeda Y. Angew Chem Int Ed, 2005, 44: 4899–4903

    Article  CAS  Google Scholar 

  45. Nihei M, Tahira H, Takahashi N, Otake Y, Yamamura Y, Saito K, Oshio H. J Am Chem Soc, 2010, 132: 3553–3560

    Article  CAS  PubMed  Google Scholar 

  46. Craig GA, Sánchez Costa J, Roubeau O, Teat SJ, Aromi G. Chem Eur J, 2011, 17: 3120–3127

    Article  CAS  PubMed  Google Scholar 

  47. Seredyuk M, Muñoz MC, Castro M, Romero-Morcillo T, Gaspar AB, Real JA. Chem Eur J, 2013, 19: 6591–6596

    Article  CAS  PubMed  Google Scholar 

  48. Weselski M, Książek M, Rokosz D, Dreczko A, Kusz J, Bronisz R. Chem Commun, 2018, 54: 3895–3898

    Article  CAS  Google Scholar 

  49. Toloczko A, Kaźmierczak M, Weselski M, Siczek M, Książek M, Kusz J, Bronisz R. Cryst Growth Des, 2023, 23: 1611–1621

    Article  CAS  Google Scholar 

  50. Rosario-Amorin D, Dechambenoit P, Bentaleb A, Rouzières M, Mathonière C, Clérac R. JAm Chem Soc, 2018, 140: 98–101

    Article  CAS  Google Scholar 

  51. Valverde-Munoz FJ, Seredyuk M, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Chem Sci, 2019, 10: 3807–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao XH, Shao D, Chen JT, Gan DX, Yang J, Zhang YZ. Sci China Chem, 2022, 65: 532–538

    Article  CAS  Google Scholar 

  53. Deng YF, Wang YN, Zhao XH, Zhang YZ. CCS Chem, 2022, 4: 3064–3075

    Article  CAS  Google Scholar 

  54. Carlin RL. Magnetochemistry. Berlin: Springer-Verlag Press, 1986

    Book  Google Scholar 

  55. Gu ZG, Liu W, Yang QF, Zhou XH, Zuo JL, You XZ. Inorg Chem, 2007, 46: 3236–3244

    Article  CAS  PubMed  Google Scholar 

  56. Lorenz S, Plietker B. ChemCatChem, 2016, 8: 3203–3206

    Article  CAS  Google Scholar 

  57. Sheldrick GM. SHELXL-2014, Program for the solution of crystal structures. Göttingen: University of Göttingen, 2014

    Google Scholar 

  58. Sheldrick GM. SHELXL-2014, Program for crystal structure refinement. Göttingen: University of Göttingen, 2014

    Google Scholar 

  59. Sheldrick GM. SADABS, v.2.01, Bruker/siemens area detector absorption correction program. Madison: Bruker AXS, 1998

    Google Scholar 

  60. Shao D, Shi L, Shen FX, Wei XQ, Sato O, Wang XY. Inorg Chem, 2019, 58: 11589–11598

    Article  CAS  PubMed  Google Scholar 

  61. Halcrow MA. Chem Soc Rev, 2011, 40: 4119–4142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21671095, 22173043), the Stable Support Plan Program of Shenzhen Natural Science Fund (20200925151834005), Shenzhen Science and Technology Program (JCYJ20220818100417037), and Guangdong Basic and Applied Basic Research Foundation (2022A1515011818). We thank Dr. Bin Chen from Soochow University for UV-vis NIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Zhu Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XH., Deng, YF., Chen, JT. et al. An electron-transfer [Fe2Co2] square complex exhibiting unprecedented wide room-temperature hysteresis. Sci. China Chem. 67, 1198–1207 (2024). https://doi.org/10.1007/s11426-023-1835-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1835-y

Navigation