Skip to main content
Log in

Unraveling the evolution of oxygen vacancies in TiO2−x/Cu and its role in CO2 hydrogenation

  • Communications
  • Special Issue: 2024 Emerging Investigator Issue
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The remarkable contribution of oxygen vacancies has been revealed by the operando spectroscopies for methanol synthesis from CO2 hydrogeneration on the reducible metal oxide-supported copper catalysts. However, a challenge remains in the intrinsic understanding of the evolution and advantage of oxygen vacancies for methanol synthesis. Here we prepare the TiO2−x/Cu with different oxygen vacancy densities by adjusting the ball-milling frequency. At the optimal condition, a TiO2−x/Cu with more oxygen vacancies delivers an excellent methanol yield of 26.5 mmol g−1 h−1 at 300 °C with a selectivity of more than 70%. The combined analysis of experimental characterizations and theoretical calculations reveals that the mutual dispersions of TiO2−x and Cu driven by mechanical energy induce the electron rearrangement in the d orbital of the Ti atom and relax the Ti–O binding at the interface, which facilitates the formation of oxygen vacancies that further reduce the barrier of CO2 hydrogenation to *HCOO due to higher nucleophilicity of titanium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Montzka SA, Dlugokencky EJ, Butler JH. Nature, 2011, 476: 43–50

    Article  CAS  PubMed  Google Scholar 

  2. Rui N, Wang Z, Sun K, Ye J, Ge Q, Liu C. Appl Catal B-Environ, 2017, 218: 488–497

    Article  CAS  Google Scholar 

  3. Porosoff MD, Yan B, Chen JG. Energy Environ Sci, 2016, 9: 62–73

    Article  CAS  Google Scholar 

  4. Kattel S, Liu P, Chen JG. J Am Chem Soc, 2017, 139: 9739–9754

    Article  CAS  PubMed  Google Scholar 

  5. Xiong W, Wu Z, Chen X, Ding J, Ye A, Zhang W, Huang W. Sci China Chem, 2024, 67: 715–723

    Article  CAS  Google Scholar 

  6. Zabilskiy M, Sushkevich VL, Palagin D, Newton MA, Krumeich F, van Bokhoven JA. Nat Commun, 2020, 11: 2409

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Singh R, Tripathi K, Pant KK. Fuel, 2021, 303: 121289

    Article  CAS  Google Scholar 

  8. Wu C, Lin L, Liu J, Zhang J, Zhang F, Zhou T, Rui N, Yao S, Deng Y, Yang F, Xu W, Luo J, Zhao Y, Yan B, Wen XD, Rodriguez JA, Ma D. Nat Commun, 2020, 11: 5767–5776

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Liu X, Luo J, Wang H, Huang L, Wang S, Li S, Sun Z, Sun F, Jiang Z, Wei S, Li WX, Lu J. Angew Chem Int Ed, 2022, 61: e202202330

    Article  CAS  ADS  Google Scholar 

  10. Meng A, Zhu B, Zhong B, Zhang L, Cheng B. Appl Surf Sci, 2017, 422: 518–527

    Article  CAS  ADS  Google Scholar 

  11. Huygh S, Bogaerts A, Neyts EC. J Phys Chem C, 2016, 120: 21659–21669

    Article  CAS  Google Scholar 

  12. Chattopadhyay PP, Manna I, Talapatra S, Pabi SK. Mater Chem Phys, 2001, 68: 85–94

    Article  CAS  Google Scholar 

  13. Liu L, Jiang Y, Zhao H, Chen J, Cheng J, Yang K, Li Y. ACS Catal, 2016, 6: 1097–1108

    Article  CAS  Google Scholar 

  14. Lyu Z, Zhu S, Xie M, Zhang Y, Chen Z, Chen R, Tian M, Chi M, Shao M, Xia Y. Angew Chem Int Ed, 2020, 60: 1909–1915

    Article  Google Scholar 

  15. Ma Y, Ge H, Yi S, Yang M, Feng D, Ren Y, Gao J, Qin Y. Sci China Chem, 2022, 65: 2596–2603

    Article  CAS  Google Scholar 

  16. Zhu J, Ciolca D, Liu L, Parastaev A, Kosinov N, Hensen EJM. ACS Catal, 2021, 11: 4880–4892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang Z, Zeng M, Wang K, Yue X, Chen X, Dai W, Fu X. Fuel, 2022, 315: 123186

    Article  CAS  Google Scholar 

  18. Kruse N, Chenakin S. Appl Catal A-Gen, 2011, 391: 367–376

    Article  CAS  Google Scholar 

  19. Zhang X, Shi W, Han S, Li Y, Shen W. Sci China Chem, 2024, 67: 705–714

    Article  CAS  Google Scholar 

  20. Lira E, Wendt S, Huo P, Hansen JØ, Streber R, Porsgaard S, Wei Y, Bechstein R, Lægsgaard E, Besenbacher F. J Am Chem Soc, 2011, 133: 6529–6532

    Article  CAS  PubMed  Google Scholar 

  21. Tang Y, Zhou H, Zhang K, Ding J, Fan T, Zhang D. Chem Eng J, 2015, 262: 260–267

    Article  CAS  Google Scholar 

  22. Lu Y, Zhou L, Wang S, Zou Y. Nano Res, 2022, 16: 1890–1912

    Article  ADS  Google Scholar 

  23. Ceotto M, Lo Presti L, Cappelletti G, Meroni D, Spadavecchia F, Zecca R, Leoni M, Scardi P, Bianchi CL, Ardizzone S. J Phys Chem C, 2012, 116: 1764–1771

    Article  CAS  Google Scholar 

  24. Tian J, Hou L, Xia W, Wang Z, Tu Y, Pei W, Zhou S, Zhao J. Phys Chem Chem Phys, 2023, 25: 28533–28540

    Article  CAS  PubMed  Google Scholar 

  25. Zhu K, Zhu Q, Jiang M, Zhang Y, Shao Z, Geng Z, Wang X, Zeng H, Wu X, Zhang W, Huang K, Feng S. Angew Chem Int Ed, 2022, 61: e202207600

    Article  CAS  Google Scholar 

  26. Trottier RM, Bare ZJL, Millican SL, Musgrave CB. ACS Appl Mater Interfaces, 2020, 12: 23831–23843

    Article  CAS  PubMed  Google Scholar 

  27. Chimentão RJ, Miranda BC, Ruiz D, Gispert-Guirado F, Medina F, Llorca J, Santos JBO. J Energy Chem, 2020, 42: 185–194

    Article  Google Scholar 

  28. Beck A, Zabilskiy M, Newton MA, Safonova O, Willinger MG, van Bokhoven JA. Nat Catal, 2021, 4: 488–497

    Article  CAS  Google Scholar 

  29. Yang M, Yu J, Zimina A, Sarma BB, Pandit L, Grunwaldt JD, Zhang L, Xu H, Sun J. Angew Chem Int Ed, 2023, 62: e202216803

    Article  CAS  Google Scholar 

  30. Abdel-Mageed AM, Klyushin A, Rezvani A, Knop-Gericke A, Schlögl R, Behm RJ. Angew Chem Int Ed, 2019, 58: 10325–10329

    Article  CAS  Google Scholar 

  31. Polarz S, Strunk J, Ischenko V, van den Berg MWE, Hinrichsen O, Muhler M, Driess M. Angew Chem Int Ed, 2006, 45: 2965–2969

    Article  CAS  Google Scholar 

  32. Kim CH. Top Catal, 2003, 22: 319–324

    Article  CAS  Google Scholar 

  33. Li S, Wang Y, Yang B, Guo L. Appl Catal A-Gen, 2019, 571: 51–60

    Article  CAS  Google Scholar 

  34. Jiang X, Koizumi N, Guo X, Song C. Appl Catal B-Environ, 2015, 170–171: 173–185

    Article  Google Scholar 

  35. Le Valant A, Comminges C, Tisseraud C, Canaff C, Pinard L, Pouilloux Y. J Catal, 2015, 324: 41–49

    Article  CAS  Google Scholar 

  36. An X, Li J, Zuo Y, Zhang Q, Wang D, Wang J. Catal Lett, 2007, 118: 264–269

    Article  CAS  Google Scholar 

  37. Bao Y, Huang C, Chen L, Zhang Y, Liang L, Wen J, Fu M, Wu J, Ye D. J Energy Chem, 2018, 27: 381–388

    Article  Google Scholar 

  38. Yang Y, Xu Y, Ding H, Yang D, Cheng E, Hao Y, Wang H, Hong Y, Su Y, Wang Y, Peng L, Li J. Catal Sci Technol, 2021, 11: 4367–4375

    Article  CAS  Google Scholar 

  39. Liang XL, Dong X, Lin GD, Zhang HB. Appl Catal B-Environ, 2009, 88: 315–322

    Article  CAS  Google Scholar 

  40. Xu Y, Gao Z, Peng L, Liu K, Yang Y, Qiu R, Yang S, Wu C, Jiang J, Wang Y, Tan W, Wang H, Li J. J Catal, 2022, 414: 236–244

    Article  CAS  Google Scholar 

  41. Golunski S, Burch R. Top Catal, 2021, 64: 974–983

    Article  CAS  Google Scholar 

  42. Teramura K, Okuoka S, Tsuneoka H, Shishido T, Tanaka T. Appl Catal B-Environ, 2010, 96: 565–568

    Article  CAS  Google Scholar 

  43. Liu B, Li C, Zhang G, Yao X, Chuang SSC, Li Z. ACS Catal, 2018, 8: 10446–10456

    Article  CAS  Google Scholar 

  44. Sirita J, Phanichphant S, Meunier FC. Anal Chem, 2007, 79: 3912–3918

    Article  CAS  PubMed  Google Scholar 

  45. Chen HY, Chen L, Lin J, Tan KL, Li J. J Phys Chem B, 1998, 102: 1994–2000

    Article  CAS  Google Scholar 

  46. Collins SE, Baltanás MA, Bonivardi AL. J Phys Chem B, 2006, 110: 5498–5507

    Article  CAS  PubMed  Google Scholar 

  47. Carley AF, Roberts MW, Strutt AJ. Catal Lett, 1994, 29: 169–175

    Article  CAS  Google Scholar 

  48. Pokrovski K, Bell A. J Catal, 2006, 241: 276–286

    Article  CAS  Google Scholar 

  49. Fujita S, Usui M, Ohara E, Takezawa N. Catal Lett, 1992, 13: 349–358

    Article  CAS  Google Scholar 

  50. Weigel J, Fröhlich C, Baiker A, Wokaun A. Appl Catal A-Gen, 1996, 140: 29–45

    Article  CAS  Google Scholar 

  51. Zhu J, Su Y, Chai J, Muravev V, Kosinov N, Hensen EJM. ACS Catal, 2020, 10: 11532–11544

    Article  CAS  Google Scholar 

  52. Larmier K, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Copéret C. Angew Chem Int Ed, 2017, 56: 2318–2323

    Article  CAS  Google Scholar 

  53. Wang J, Li G, Li Z, Tang C, Feng Z, An H, Liu H, Liu T, Li C. Sci Adv, 2017, 3: e1701290

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  54. Chen K, Fang H, Wu S, Liu X, Zheng J, Zhou S, Duan X, Zhuang Y, Chi Edman Tsang S, Yuan Y. Appl Catal B-Environ, 2019, 251: 119–129

    Article  CAS  Google Scholar 

  55. Wang W, Qu Z, Song L, Fu Q. J Energy Chem, 2020, 40: 22–30

    Article  CAS  Google Scholar 

  56. Sushkevich VL, van Bokhoven JA. Catal Sci Technol, 2018, 8: 4141–4150

    Article  CAS  Google Scholar 

  57. Lee K, Anjum U, Araújo TP, Mondelli C, He Q, Furukawa S, Pérez-Ramírez J, Kozlov SM, Yan N. Appl Catal B-Environ, 2022, 304: 120994

    Article  CAS  Google Scholar 

  58. Meunier FC, Kdhir R, Potrzebowska N, Perret N, Besson M. Inorg Chem, 2019, 58: 8021–8029

    Article  CAS  PubMed  Google Scholar 

  59. Chen C, Song G, Wang Z, Song J, Jiang Q, Zhai Y, Liu D. Appl Catal B-Environ, 2024, 341: 123330

    Article  CAS  Google Scholar 

  60. Hu J, Yu L, Deng J, Wang Y, Cheng K, Ma C, Zhang Q, Wen W, Yu S, Pan Y, Yang J, Ma H, Qi F, Wang Y, Zheng Y, Chen M, Huang R, Zhang S, Zhao Z, Mao J, Meng X, Ji Q, Hou G, Han X, Bao X, Wang Y, Deng D. Nat Catal, 2021, 4: 242–250

    Article  CAS  ADS  Google Scholar 

  61. Zhou H, Chen Z, López AV, López ED, Lam E, Tsoukalou A, Willinger E, Kuznetsov DA, Mance D, Kierzkowska A, Donat F, Abdala PM, Comas-Vives A, Copéret C, Fedorov A, Müller CR. Nat Catal, 2021, 4: 860–871

    Article  CAS  Google Scholar 

  62. Liu Z, Rittermeier A, Becker M, Kähler K, Löffler E, Muhler M. Langmuir, 2011, 27: 4728–4733

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development Program of China (2022YFE0128600, 2023YFA1508103), National Natural Science Foundation of China (22278365), Natural Science Foundation of Zhejiang Province (LR22B060002), the grant from Shanxi-Zheda Institue of Advanced Materials and Chemical Engineering (2021ST-AT-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Xie.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhang, F., Cao, N. et al. Unraveling the evolution of oxygen vacancies in TiO2−x/Cu and its role in CO2 hydrogenation. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-023-1995-6

Navigation