Skip to main content
Log in

Piezoceramic Resistance to Radiation Amorphization During Operation in ITER

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Piezoelectric motors designed for operation in the ITER tokamak-reactor must be tested for stability under severe radiation conditions. Properties of lead zirconate-titanate that is the most common type of piezoelectric materials were analyzed from the point of view on influence of radiation. It is shown that, at the expected in ITER level of radiation, this piezoceramics has a good potential for resistance to radiation induced amorphization and depolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. C. Vorpahl, A. Alekseev, S. Arshad, T. Hatae, A. Khodakhi, J. Klabachahi, F. Le. Guern, E. Mukhin, S. Pak, C. Seon, M. Smith, E. Yatsuka, A. Zvonkov, Fusion Eng. Des., 123 (11), 712 (2017). https://doi.org/10.1016/j.fusengdes.2017.05.111

    Article  CAS  Google Scholar 

  2. M. G. Cain, P. M. Weaver, M. J. Reece, J. Mater. Chem. A, 4 (27), 10394 (2016). https://doi.org/10.1039/C6TA01935H

    Article  CAS  Google Scholar 

  3. E. E. Mukhin, V. M. Nelyubov, V. A. Yukish, E. P. Smirnova, V. A. Solovei, N. K. Kalinina, V. G. Nagaitsev, M. F. Valishin, A. R. Belozerova, S. A. Enin, A. A. Borisov, N. A.Deryabina, V. I. Khripunov, D. V. Portnov, N. A. Babinov, D. V. Dokhtarenko, I. A. Khodunov, V. N. Klimov, A. G. Razdobarin, S. E. Alexandrov, D. I. Elets, A. N. Bazhenov, I. M. Bukreev, An. P. Chernakov, A. M. Dmitriev, Y. G. Ibragimova, A. N. Koval, G. S. Kurskiev, A. E. Litvinov, K. O. Nikolaenko, D. S. Samsonov, V. A. Senichenkov, R. S. Smirnov, S. Yu. Tolstyakov, I. B. Tereschenko, L. A. Varshavchik, N. S. Zhiltsov, A. N. Mokeev, P. V. Chernakov, P. Andrew, M. Kempenaars, Fusion Eng. Des., 176 (9), 113017 (2022).https://doi.org/10.1016/j.fusengdes.2017.06.014

  4. E. Mukhin, P. Andrew, N. Babinov, M. Bassan, A. Bazhenov, I. Bukreev, Al. Chernakov, An. Chernakov, A. Dmitriev, V. Yukish, M. Kochergin, A. Koval, G. Kurskiev, A. Litvinov, V. Nelyubov, A. Razdobarin, D. Samsonov, V. Semenov, V. Solokha, V. Solovey, S. Tolstyakov, M. Walsh, Fusion Eng. Des., 123 (11), 686 (2017). https://doi.org/10.1016/j.fusengdes.2017.06.014

    Article  CAS  Google Scholar 

  5. M. Pillon, Ch. Monti, G. Mugnaini, C. Neri, P. Rossi, M. Carta, O. Fiorani, A. Santagata, Fusion Eng. Des., 96–97, 329 (2015). https://doi.org/10.1016/j.fusengdes.2015.03.025

    Article  CAS  Google Scholar 

  6. G. A. Smolensky, V. A. Bokov, V. A. Isupov, N. N. Kraynik, R. E. Pasynkov, A. I. Sokolov, N. K. Yushin, Fizika segnetoelektricheskikh yavleniy (Nauka, L., 1985). (In Russian)

  7. R. A. Forrest, J. Kopecky, J. Ch. Sublet, The European activation file: EAF-2007 neutron-induced cross section library (EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, U.K., 2007), UKAEA FUS 535.

  8. J.-Ch. Sublet, J. W. Eastwood, J. G. Morgan, M. R. Gilbert, M. Fleming, W. Arter, Nucl. Data Sheets, 139, 77 (2017). https://doi.org/10.1016/j.nds.2017.01.002

    Article  ADS  CAS  Google Scholar 

  9. A. J. Koning, D. Rochman, J. Ch. Sublet, TENDL-2017: TALYS-based evaluated nuclear data library [Electronic source] (release date: December 30, 2017). https://tendl.web.psi.ch

  10. MJ. Loughlin, N. P. Taylor, ITER Report ITERJT.2V3V8G (2009), vol. 1.1.

  11. E. V. Peshikov, Deystvie radiatsii na segnetoelektriki (Fan, Tashkent, 1972). (In Russian)

  12. F. D. Bloss, Crystallography and crystal chemistry (Mineralogical Society of America, Washington, DC, 1994).

  13. O. Hauser, M. Schenk, Phys. Status Solidi B, 18 (2), 547 (1966). https://doi.org/10.1002/pssb.19660180208

  14. S. P. Solov’ev, V. Ya. Dudarev, V. V. Zakurkin, I. I. Kuz’min, Izv. AN SSSR. Ser. fiz., XXXV (9), 1931 (1971) (in Russian).

  15. K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S. Averback, R. E. Stoller, T. Suzudo, L. Malerba, F. Banhart, W. J. Weber, F. Willaime, S. L. Dudarev, D. Simeone, J. Nucl. Mater., 512, 450 (2018). https://doi.org/10.1016/j.jnucmat.2018.10.027

    Article  ADS  CAS  Google Scholar 

  16. A. Meldrum, L. A. Boatner, W.J. Weber, R.C. Ewing, J. Nucl. Mater., 300 (2–3), 242 (2002). https://doi.org/10.1016/S0022-3115(01)00733-4

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The study was partially funded in the framework of the Ioffe Institute State Assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Mukhin.

Ethics declarations

The authors of this work declare that they have no conflict of interests.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhin, E.E., Smirnova, E.P., Babinov, N.A. et al. Piezoceramic Resistance to Radiation Amorphization During Operation in ITER. Tech. Phys. Lett. 49 (Suppl 2), S85–S89 (2023). https://doi.org/10.1134/S1063785023900443

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023900443

Keywords:

Navigation