Skip to main content
Log in

The Ion–Solid Interaction Potential Determination from the Backscattered Particles Spectra

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

The values of the atomic particle–solid potential were obtained for the first time from experimental data on the energy spectra and angular dependences of backscattered particles. The proposed procedure for determining the potential has never been applied previously. It is shown that the obtained data do not depend on the potential approximation used. The ion–solid interaction potential differs markedly from the potential describing collisions in the gas phase. The screening constant increases by 10–15%. The increase in screening is due to an increase in the density of the electron gas in the region between the incident particle and scattering center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. G. Moliere, Z. Naturforsch. A. 2 (3), 133 (1947). https://doi.org/10.1515/zna-1947-0302

    Article  ADS  Google Scholar 

  2. J. F. Ziegler, J. P. Biersack, and U. Littmark, The stopping and range of ions in solids. Ser.: Stopping and range of ions in matter (Pergamon, N.Y., 1985).

  3. W. Lenz, Z. Phys. 77 (11–12), 713 (1932). https://doi.org/10.1007/BF01342150

  4. H. Jensen, Z. Phys., 77 (11–12), 722 (1932). https://doi.org/10.1007/BF01342151

  5. W. D. Wilson, L. G. Haggmark, and J. P. Biersack, Phys. Rev. B, 15 (5), 2458 (1977). https://doi.org/10.1103/PhysRevB.15.2458

    Article  CAS  ADS  Google Scholar 

  6. A. N. Zinoviev, Nucl. Instr. Meth. Phys. Res. B, 269 (9), 829 (2011). https://doi.org/10.1016/j.nimb.2010.11.074

    Article  CAS  ADS  Google Scholar 

  7. A. N. Zinoviev and K. Nordlund, Nucl. Instr. Meth. Phys. Res. B, 406 (Pt B), 511 (2017). https://doi.org/10.1016/j.nimb.2017.03.047

  8. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, K. Nordlund, and A. N. Zinoviev, Nucl. Instr. Meth. Phys. Res. B, 460, 4 (2019). https://doi.org/10.1016/j.nimb.2019.03.037

    Article  CAS  ADS  Google Scholar 

  9. A. N. Zinoviev, P. Yu. Babenko, and K. Nordlund, Nuc-l. Instr. Meth. Phys. Res. B, 508, 10 (2021). https://doi.org/10.1016/j.nimb.2021.10.001

    Article  CAS  ADS  Google Scholar 

  10. A. Agrawal, R. Mishra, L. Ward, K. M. Flores, and W. Windl, Modelling Simul. Mater. Sci. Eng., 21 (8), 085001 (2013). https://doi.org/10.1088/0965-0393/21/8/085001

    Article  CAS  ADS  Google Scholar 

  11. C. Bjorkas, N. Juslin, H. Timko, K. Vortler, K. Nordlund, K. Henriksson, and P. Erhart, J. Phys.: Condens. Matter, 21 (44), 445002 (2009). https://doi.org/10.1088/0953-8984/21/44/445002

    Article  CAS  PubMed  ADS  Google Scholar 

  12. M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, J. Phys.: Condens. Matter, 25 (39), 395502 (2013). https://doi.org/10.1088/0953-8984/25/39/395502

    Article  CAS  PubMed  Google Scholar 

  13. B. Bruckner, T. Strapko, M. A. Sortica, P. Bauer, and D. Primetzhofer, Nucl. Instr. Meth. Phys. Res. B, 470, 21 (2020). https://doi.org/10.1016/j.nimb.2020.02.018

    Article  CAS  ADS  Google Scholar 

  14. P. Yu. Babenko, D. S. Meluzova, A. P. Solonitsyna, A. P. Shergin, and A. N. Zinoviev, JETP, 128 (4), 523 (2019). https://doi.org/10.1134/S1063776119030014

    Article  CAS  ADS  Google Scholar 

  15. V. I. Shulga, Rad. Eff., 100 (1-2), 71 (1986). https://doi.org/10.1080/00337578608208737

    Article  CAS  ADS  Google Scholar 

  16. D. S. Meluzova, P. Yu. Babenko, A. P. Shergina, and A. N. Zinoviev, J. Synch. Investig., 13 (2), 335 (2019). https://doi.org/10.1134/S1027451019020332

    Article  CAS  Google Scholar 

  17. S. N. Markin, D. Primetzhofer, S. Prusa, M. Brunmayr, G. Kowarik, F. Aumayr, and P. Bauer, Phys. Rev. B, 78 (19), 195122 (2008). https://doi.org/10.1103/PhysRevB.78.195122

    Article  CAS  ADS  Google Scholar 

  18. H. Verbeek, W. Eckstein, and R.S. Bhattacharya, J. Appl-. Phys., 51 (3), 1783 (1980). https://doi.org/10.1063/1.327740

    Article  CAS  ADS  Google Scholar 

  19. O. B. Firsov, Sov. Phys. JETP, 6 (3), 534 (1958).

    ADS  Google Scholar 

Download references

Funding

Babenko, Mikhailov and Tensin thank you for the financial support the Russian Scientific Foundation (grant 22-22-20081, https://rscf.ru/project/22-22-20081/) and also the Saint-Petersburg Scientific Foundation according to the agreement 22/2022 of April 14, 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zinoviev.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, P.Y., Zinoviev, A.N., Mikhailov, V.S. et al. The Ion–Solid Interaction Potential Determination from the Backscattered Particles Spectra. Tech. Phys. Lett. 49, 199–202 (2023). https://doi.org/10.1134/S1063785023900030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785023900030

Keywords:

Navigation