Skip to main content
Log in

Characterizing Accuracy of Normal Forms to Study Trajectories in Cislunar Space

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Qualitative understanding of cislunar trajectories is increasingly important as lunar missions become more commonplace. Researchers have used the Lie series method to reduce the Circular Restricted Three-Body Problem (CR3BP) to its normal form up to some approximation order and in the vicinity of the five libration points. This approximation allows for analytical propagation in proximity to the libration points by defining action-angle variables. These variables are such that, up to the approximation order, the actions are constant and the angles are linear in time. An objective of this work is to examine how the normal form coordinates characterize trajectories in the vicinity of the libration points and maintain accuracy of propagation. Normal form coordinates qualitatively separate periodic, quasiperiodic, transit, and reflective trajectories. Another objective of this work is to examine the accuracy of the approximate normal form centered at \(L_1\) and \(L_2\) at various approximation orders, distances, and energy levels. At higher approximation orders, the normal form is able to accurately propagate trajectories in a ball around the libration point of origin. Finally, two example applications of this method are then examined, including maneuver characterization and Halo orbit identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets produced in this study can be obtained from the corresponding author upon a reasonable request.

References

  1. Herrick, S.: Astrodynamics: Orbit Determination, Space Navigation, Celestial Mechanics. Astrodynamics, vol. 1. Van Nostrand Reinhold Company, London, England (1971)

  2. Battin, R.H.: Mathematics and Methods of Astrodynamics, Revised AIAA Education Series. AIAA, NY (1999)

    Google Scholar 

  3. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378 (1959). https://doi.org/10.1086/107958

    Article  MathSciNet  Google Scholar 

  4. Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969). https://doi.org/10.1007/BF01230629

    Article  MathSciNet  Google Scholar 

  5. Deprit, A., Elipe, A.: Complete reduction of the Euler-Poinsot problem. J. Astron. Sci. 41(4), 603–628 (1993)

    MathSciNet  Google Scholar 

  6. Spreen, E.M.: Trajectory Design and Targeting For Applications to the Exploration Program in Cislunar Space. Thesis, Purdue University Graduate School (May 2021). https://doi.org/10.25394/PGS.14445717.v1

  7. Gómez, G., Llibre, J., Martinez, R., Simo, C.: Dynamics And Mission Design Near Libration Points, Vol I: Fundamentals: The Case Of Collinear Libration Points: Fundamentals - The Case of Collinear Libration Points. World Scientific Monograph Series in Mathematics. World Scientific Publishing Company, Singapore, SINGAPORE (2001)

  8. Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571 (2004)

    Article  MathSciNet  Google Scholar 

  9. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Wellington (2011)

    Google Scholar 

  10. Lei, H., Xu, B.: Low-energy transfers to cislunar periodic orbits visiting triangular libration points. Commun. Nonlinear Sci. Numer. Simul. 54, 466–481 (2018). https://doi.org/10.1016/j.cnsns.2017.05.031

    Article  MathSciNet  Google Scholar 

  11. Singh, S.K., Anderson, B.D., Taheri, E., Junkins, J.L.: Low-thrust transfers to southern L_2 near-rectilinear halo orbits facilitated by invariant manifolds. J. Optim. Theory Appl. 191(2), 517–544 (2021). https://doi.org/10.1007/s10957-021-01898-9

    Article  MathSciNet  Google Scholar 

  12. Singh, S., Junkins, J., Anderson, B., Taheri, E.: Eclipse-conscious transfer to lunar gateway using ephemeris-driven terminal coast arcs. J. Guidance, Control, Dyn. 44(11), 1972–1988 (2021). https://doi.org/10.2514/1.G005920

    Article  Google Scholar 

  13. Oguri, K., Oshima, K., Campagnola, S., Kakihara, K., Ozaki, N., Baresi, N., Kawakatsu, Y., Funase, R.: EQUULEUS trajectory design. J. Astron. Sci. 67(3), 950–976 (2020). https://doi.org/10.1007/s40295-019-00206-y

    Article  Google Scholar 

  14. Oshima, K.: Regularized direct method for low–thrust trajectory optimization: minimum–fuel transfer between cislunar periodic orbits. Adv. Sp. Res. 72(6), 2051–2063 (2023). https://doi.org/10.1016/j.asr.2023.05.055

    Article  Google Scholar 

  15. Zhang, R., Wang, Y., Shi, Y., Zhang, C., Zhang, H.: Performance analysis of impulsive station-keeping strategies for cis-lunar orbits with the ephemeris model. Acta Astronaut. 198, 152–160 (2022). https://doi.org/10.1016/j.actaastro.2022.05.054

    Article  Google Scholar 

  16. Muralidharan, V., Howell, K.C.: Leveraging stretching directions for stationkeeping in Earth-Moon halo orbits. Adv. Sp. Res. 69(1), 620–646 (2022). https://doi.org/10.1016/j.asr.2021.10.028

    Article  Google Scholar 

  17. Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22(3), 241–253 (1980). https://doi.org/10.1007/BF01229511

    Article  MathSciNet  Google Scholar 

  18. Richardson, D.L.: Analytical construction of periodic orbits about the collinear points of the Sun-Earth system (2010)

  19. Jorba, Á., Villanueva, J.: Numerical computation of normal forms around some periodic orbits of the restricted three-body problem. Phys. D: Nonlinear Phenom. 114(3–4), 197–229 (1998). https://doi.org/10.1016/S0167-2789(97)00194-2

    Article  MathSciNet  Google Scholar 

  20. Jorba, Á., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D: Nonlinear Phenom. 132(1–2), 189–213 (1999). https://doi.org/10.1016/S0167-2789(99)00042-1

    Article  MathSciNet  Google Scholar 

  21. Jorba, Á.: A methodology for the numerical computation of normal forms, centre manifolds and first integrals of hamiltonian systems. Exp. Math. 8(2), 155–195 (1999). https://doi.org/10.1080/10586458.1999.10504397

    Article  MathSciNet  Google Scholar 

  22. Duarte, G., Jorba, Á.: Using normal forms to study Oterma’s transition in the Planar RTBP. Discrete and Continuous Dynamical Systems - B, 15 (2022)

  23. Masdemont, J.J.: High-order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. 20(1), 59–113 (2005). https://doi.org/10.1080/14689360412331304291

    Article  MathSciNet  Google Scholar 

  24. Celletti, A., Pucacco, G., Stella, D.: Lissajous and halo orbits in the restricted three-body problem. J. Nonlinear Sci. 25(2), 343–370 (2015). https://doi.org/10.1007/s00332-015-9232-2

    Article  MathSciNet  Google Scholar 

  25. Lara, M.: A Hopf variables view on the libration points dynamics. Celestial Mechanics and Dynamical Astronomy 129(3), 285–306 (2017) arxiv:1703.02887. https://doi.org/10.1007/s10569-017-9778-4

  26. Paez, R.I., Guzzo, M.: Transits close to the Lagrangian solutions L \(_1\), L \(_2\) in the elliptic restricted three-body problem. Nonlinearity 34(9), 6417–6449 (2021). https://doi.org/10.1088/1361-6544/ac13be

    Article  MathSciNet  Google Scholar 

  27. Paez, R.I., Guzzo, M.: On the analytical construction of halo orbits and halo tubes in the elliptic restricted three-body problem. arXiv:2203.16315 [astro-ph] (2022) arxiv:2203.16315 [astro-ph]

  28. Mayer, M., Schwab, D., Eapen, R., Singla, P.: Orbit Characterization and Determination Strategies in the CR3BP Framework. In: 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, North Carolina (2022)

  29. Peterson, L.T., Scheeres, D.J.: Orbital Elements for the Restricted Three-Body Problem. In: 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, North Carolina, p. 20 (2022)

  30. Paez, R.I., Locatelli, U.: Design of maneuvers based on new normal form approximations: The case study of the CPRTBP. In: AIP Conference Proceedings, vol. 1637. Narvik, Norway, pp. 776–785 (2014). https://doi.org/10.1063/1.4904650

  31. Pars, L.: A Modern Treatise on Analytical Dynamics. Heinemann, London (1965)

    Google Scholar 

  32. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, New York, NY, USA (2002)

    Google Scholar 

  33. Fassò, F.: The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates. Zeitschrift für angewandte Mathematik und Physik ZAMP 47, 953–976 (1996)

    Article  MathSciNet  Google Scholar 

  34. Fassò, F.: Superintegrable hamiltonian systems: geometry and perturbations. Acta Appl. Math. 87, 93–121 (2005)

    Article  MathSciNet  Google Scholar 

  35. Gen-ichiro Hori: Theory of General Perturbation with Unspecified Canonical Variable. Publications of the Astronomical Society of Japan 18 (1966)

  36. Dragt, A.J., Finn, J.M.: Lie series and invariant functions for analytic symplectic maps. J. Math. Phys. 17(12), 2215–2227 (1976). https://doi.org/10.1063/1.522868

    Article  MathSciNet  Google Scholar 

  37. Ángel Jorba: The Lagrangian Solutions. UNESCO Encyclopedia of Life Support Systems 6.119.55 (2015)

Download references

Acknowledgements

This material is based upon work supported through the United States Air Force Office of Scientific Research (AFOSR) grants FA9550-20-1-0176 and FA9550-22-1-0092 and the Department of Defense through The Science, Mathematics, and Research for Transformation (SMART) Scholarship-for-Service Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Schwab.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Preliminary Transformations

Appendix A Preliminary Transformations

1.1 A.1 Polynomial Approximation and Resulting Hamiltonian

New equations of motion for the system defined from (6) may be approximated by taking series expansions of the two gravitational potentials:

$$\begin{aligned} \frac{1}{r_i(x,y,z)} = \frac{1}{\Vert \varvec{\rho } - \textbf{d}_i\Vert } = \sum _{n\ge 0}^{\infty } \frac{\rho ^n}{d_i^{n+1}} P_{n} \left( \frac{\varvec{\rho } \cdot \textbf{d}_i}{\rho d_i} \right) \end{aligned}$$
(A1)

under the assumption \(\rho < d_i\), where \(\rho ^2 = x^2 + y^2 +z^2\), \(\textbf{d}_1 = [\frac{-1\pm \gamma }{\gamma }, 0, 0]^T\) for the Earth’s potential, \(\textbf{d}_2 = [\pm 1, 0, 0]^T\) for the Moon’s potential, and \(P_{n} \left( \cdot \right)\) are the Legendre polynomials of the first kind. As shown by Richardson [17], these new equations of motion are

$$\begin{aligned} \begin{aligned} \ddot{x} - 2\dot{y} - (1+2c_2)x&= \frac{\partial }{\partial x} \sum _{n\ge 3} c_n \rho ^n P_{n} \left( \frac{x}{\rho } \right) \\ \ddot{y} + 2 \dot{x} + (c_2 -1) y&= \frac{\partial }{\partial y} \sum _{n\ge 3} c_n \rho ^n P_{n} \left( \frac{x}{\rho } \right) \\ \ddot{z} +c_2 z&= \frac{\partial }{\partial z} \sum _{n\ge 3} c_n \rho ^n P_{n} \left( \frac{x}{\rho } \right) , \\ \end{aligned} \end{aligned}$$
(A2)

where \(c_n\) captures the coefficients of the expansion

$$\begin{aligned} c_n(\mu ) = \frac{1}{\gamma _j^3}\left( (\pm 1)^n \mu + (-1)^n (1-\mu ) \left( \frac{\gamma _j}{1 \mp \gamma _j}\right) ^{n+1} \right) , \end{aligned}$$

where again, the upper sign is for \(L_1\), the lower sign is for \(L_2\), \(\gamma _j\) is the distance from the libration point of interest to the Moon, and \(j=1,2\) indexes the libration point of interest. Transforming to the conjugate momenta–defined in the same way as in the synodic reference frame, but now in the libration-centered coordinates–the new Hamiltonian–first shown in (7)–is restated here:

$$\begin{aligned} \begin{aligned} H(x, y, z, p_x, p_y, p_z)&= \frac{1}{2} (p_x^2 + p_y^2 +p_z^2) + yp_x-xp_y\\&\hspace{3em}-c_2 x^2 + \frac{c_2}{2} (y^2 +z^2) - \sum _{n\ge 3} c_n \rho ^n P_{n} \left( \frac{x}{\rho } \right) . \end{aligned} \end{aligned}$$
(A3)

1.2 A.2 Diagonalization

Letting the quadratic terms be collected in \(H_2\), the objective now is to define a symplectic change of variables to eliminate the cross terms from \(H_2\) and decouple the linearized system. The z-direction is already a decoupled harmonic oscillator with a frequency of \(\nu _0=\sqrt{c_2}\) in the linearized system [37], therefore the planar case is examined. Under the planar assumption, the EOM may be written as

$$\begin{aligned} \dot{\varvec{\xi }} = {{\textbf {J}}} \nabla H_2(\varvec{\xi }) = {{\textbf {M}}}\varvec{\xi } \end{aligned}$$
(A4)

where \(\varvec{\xi }=[x,y,p_x,p_y]^T\) and

$$\begin{aligned} {{\textbf {J}}} = \begin{bmatrix} \textbf{0} &{} \textbf{I}_2 \\ -\textbf{I}_2 &{}\textbf{0} \end{bmatrix} \qquad {{\textbf {M}}}=\begin{bmatrix} 0&{}1&{}1&{}0 \\ -1&{}0&{}0&{}1 \\ 2c_2&{}0&{}0&{}1 \\ 0&{}-c_2&{}-1&{}0\end{bmatrix}. \end{aligned}$$

The characteristic polynomial of \({{\textbf {M}}}\) is \(\lambda ^4 +(2-c_2)\lambda ^2 + (1+c_2-2c_2^2)=0\), giving

$$\begin{aligned} \eta _{1,2} = \frac{c_2-2 \mp \sqrt{9c_2^2-8c_2}}{2} \end{aligned}$$
(A5)

where \(\eta =\lambda ^2\). Given \(\mu \in [0,\frac{1}{2})\) forces \(c_2>1\) thus causing \(\eta _1 < 0\) and \(\eta _2>0\), the collinear libration points are type saddle\(\times\)center\(\times\)center when the z-component is also included [37]. The variables \(\omega _0\) and \(\lambda _0\) are defined such \(\omega _0 = \pm \sqrt{-\eta _1}\) and \(\lambda _0 = \pm \sqrt{\eta _2}\), where, the correct sign will be discussed later. Let the eigenvectors of the matrix \({{\textbf {M}}}\), which are defined and carried out in reference [21, 37], initially define the transformation. This resulting change of variables may be cast as

$$\begin{aligned} \textbf{C} = \begin{bmatrix} {2\lambda _0} &{} 0 &{} {-2\lambda _0} &{} {2\omega _0} \\ {\lambda _0^2-2c_2-1} &{} {-\omega ^2-2c_2-1} &{} {\lambda _0^2-2c_2-1} &{} 0 \\ {\lambda _0^2+2c_2+1}&{} {-\omega ^2+2c_2+1} &{} {\lambda _0^2+2c_2+1} &{} 0 \\ {\lambda _0^3 +(1-2c_2)\lambda _0} &{} 0 &{} {-\lambda _0^3 - (1-2c_2)\lambda _0} &{} {-\omega _0^3 + (1-2c_2)\omega _0} \end{bmatrix}. \end{aligned}$$

A symplectic transform must satisfy \(\textbf{C}^T{{\textbf {J}}}\textbf{C}={{\textbf {J}}}\), but in this case

$$\begin{aligned} \textbf{C}^T{{\textbf {J}}}\textbf{C} = \begin{bmatrix} 0&{}0&{} d_{\lambda _0}&{} 0 \\ 0&{}0&{}0&{} d_{\omega _0} \\ d_{\lambda _0}&{}0 &{}0&{}0 \\ 0&{}d_{\omega _0}&{}0&{}0\end{bmatrix}. \end{aligned}$$

Letting \(s_{\lambda _0}=\sqrt{d_{\lambda _0}}\) and \(s_{\omega _0}=\sqrt{d_{\omega _0}}\), the first and third columns of \(\textbf{C}\) must be scaled by

$$\begin{aligned} s_{\lambda _0}= \sqrt{2\lambda _0 ((4+3c_2)\lambda _0^2 +4 + 5c_2 - 6c_2^2)},\\ \end{aligned}$$

while the second and fourth columns of \(\textbf{C}\) must be scaled by

$$\begin{aligned} s_{\omega _0}= \sqrt{\omega _0((4+3c_2)\omega _0^2 - 4 - 5c_2 +6c_2^2)}. \end{aligned}$$

In order for these scaled quantities to be real, then \(\lambda _0, \omega _0 >0\) as stated in reference [21, 37].

Given these scaling factors and reintroducing the z-direction under the transformation

$$\begin{aligned} z \rightarrow \frac{1}{\sqrt{\nu _0}} z, \qquad p_z \rightarrow \sqrt{\nu _0} p_z, \end{aligned}$$
(A6)

the symplectic change of variables from the libration-centered coordinate, \(\varvec{\xi } = [x, y, z, p_x, p_y, p_z]^T\), to the diagonal coordinates, \(\tilde{\varvec{\xi }} = [\tilde{x}, \tilde{y}, \tilde{z}, \tilde{p}_x, \tilde{p}_y, \tilde{p}_z]^T\), is given by

$$\begin{gathered} \mathcal {T}_{diag}:(x, y, z, p_x, p_y, p_z) \longrightarrow (\tilde{x}, \tilde{y}, \tilde{z}, \tilde{p}_x, \tilde{p}_y, \tilde{p}_z),\nonumber \\ \varvec{\xi } = \textbf{C} \tilde{\varvec{\xi }} \end{gathered}$$
(A7)

where the scaled matrix \(\textbf{C}\) with the z-transform included is

$$\begin{aligned} \textbf{C} = \begin{bmatrix} \frac{2\lambda _0}{s_{\lambda _0}} &{} 0 &{} 0 &{} \frac{-2\lambda _0}{s_{\lambda _0}} &{} \frac{2\omega _0}{s_{\omega _0}} &{} 0 \\ \frac{\lambda _0^2-2c_2-1}{s_{\lambda _0}} &{} \frac{-\omega _0^2-2c_2-1}{s_{\omega _0}} &{} 0 &{} \frac{\lambda _0^2-2c_2-1}{s_{\lambda _0}} &{} 0 &{} 0\\ 0 &{} 0 &{} \frac{1}{\sqrt{\nu _0}} &{}0 &{}0 &{}0 \\ \frac{\lambda _0^2+2c_2+1}{s_{\lambda _0}}&{} \frac{-\omega _0^2+2c_2+1}{s_{\omega _0}} &{} 0 &{} \frac{\lambda _0^2+2c_2+1}{s_{\lambda _0}} &{} 0 &{} 0\\ \frac{\lambda _0^3 +(1-2c_2)\lambda _0}{s_{\lambda _0}} &{} 0 &{} 0 &{} \frac{-\lambda _0^3 - (1-2c_2)\lambda _0}{s_{\lambda _0}} &{} \frac{-\omega _0^3 + (1-2c_2)\omega _0}{s_{\omega _0}} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \sqrt{\nu _0} \end{bmatrix}. \end{aligned}$$

Applying this transform to the Hamiltonian in (7)

$$\begin{aligned} H(\varvec{\xi }) \circ \mathcal {T}_{diag} = \lambda _0 \tilde{x}\tilde{p}_x+ \frac{\omega _0}{2}(\tilde{y}^2 + \tilde{p}_y^2) + \frac{\nu _0}{2}(\tilde{z}^2 + \tilde{p}_z^2) + \sum _{n\ge 3} H_n(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{p}_x, \tilde{p}_y, \tilde{p}_z), \end{aligned}$$
(A8)

where \(H_n(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{p}_x, \tilde{p}_y, \tilde{p}_z)\) collects higher order terms.

1.3 A.3 Complexification

Additionally, using complex variables, \(\textbf{q}\) and \({{\textbf {p}}}\), when defining the Lie series method’s generating functions is advantageous. Therefore, the complexifying transformation is introduced such that

$$\begin{gathered} \mathcal {T}_{comp}: (\tilde{x}, \tilde{y}, \tilde{z}, \tilde{p}_x, \tilde{p}_y, \tilde{p}_z) \longrightarrow ({\textbf{q}}, {{{\textbf {p}}}})\\ \begin{bmatrix} \tilde{x}\\ \tilde{p}_x\end{bmatrix} = \mathbf {I_{2\times 2}} \begin{bmatrix} q_1\\ {p}_1\end{bmatrix}, \qquad \begin{bmatrix} \tilde{y}\\ \tilde{p}_y\end{bmatrix} = \textbf{Q} \begin{bmatrix} q_2\\ {p}_2\end{bmatrix}, \qquad \begin{bmatrix} \tilde{z}\\ \tilde{p}_z\end{bmatrix} = \textbf{Q} \begin{bmatrix} q_3\\ {p}_3\end{bmatrix}, \end{gathered}$$
(A9)

where \(\mathbf {I_{2\times 2}}\) is the identity maxtrix and

$$\begin{aligned} \textbf{Q} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 &{} \sqrt{-1} \\ \sqrt{-1} &{} 1 \end{bmatrix}. \end{aligned}$$

1.4 A.4 Action-Angle Transformation

Finally, the action-angle transformtion is defined:

$$\begin{gathered}\mathcal {T}_{AA} : (\bar{\textbf{q}}, \bar{{{\textbf {p}}}}) \longrightarrow (I_1, I_2, I_3, \phi _1, \phi _2, \phi _3)\nonumber \\ \begin{aligned} &\quad \bar{q}_1= \sqrt{I_1} \exp (\phi _1) \qquad \qquad&\bar{p}_1&= \sqrt{I_1} \exp ({-\phi _1}) \nonumber \\&\quad \bar{q}_2= {\sqrt{I_2}} \exp ({\sqrt{-1}\phi _2})&\bar{p}_2&= -\sqrt{-1}{\sqrt{I_2}} \exp ({-\sqrt{-1}\phi _2}) \nonumber \\&\quad \bar{q}_3= {\sqrt{I_3}} \exp ({\sqrt{-1}\phi _3})&\bar{p}_3&= -\sqrt{-1}{\sqrt{I_3}} \exp ({-\sqrt{-1}\phi _3}). \end{aligned} \end{gathered}$$
(A10)

The Hamiltonian of (7) expressed in action-angle coordinates is given by

$$\begin{aligned}{} & {} H(\varvec{\phi }, \textbf{I}) = \left( \left( H(x, y, z, p_x, p_y, p_z) \circ \mathcal {T}_{diag} \right) \circ \mathcal {T}_{comp} \right) \circ \mathcal {T}_{AA} \nonumber \\{} & {} \quad H(\varvec{\phi }, \textbf{I}) = \lambda _0 I_1+ \omega _0 I_2+ \nu _0 I_3+ \sum _{n\ge 3} H_n(\varvec{\phi }, \textbf{I}). \end{aligned}$$
(A11)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwab, D., Eapen, R. & Singla, P. Characterizing Accuracy of Normal Forms to Study Trajectories in Cislunar Space. J Astronaut Sci 71, 16 (2024). https://doi.org/10.1007/s40295-024-00440-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-024-00440-z

Keywords

Navigation