Skip to main content
Log in

Variable properties reconstruction for functionally graded thermoelectroelastic cylinder

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this research, we present an approach to identify variable characteristics of an inhomogeneous thermoelectroelastic radially polarized elongated hollow cylinder. The cylinder’s thermomechanical characteristics depend on the radial coordinate. We consider two loading types for the cylinder—the mechanical and the thermal ones. The radial displacement is considered as the additional data collected on the outer cylinder’s surface under the first type load, while the temperature measured over a certain time interval is considered for the second type load. The direct problem after non-dimensioning and applying the Laplace transform is solved by jointly applying the shooting method and the transform inversion based on expanding the actual space in terms of the shifted Legendre polynomials. The effect of the laws of change in variable characteristics on the input data values taken in the experiment is analyzed. A nonlinear inverse problem on the reconstruction of the cylinder’s variable properties is formulated and solved on the basis of an iterative technique. The initial approximation is set in the class of positive bounded linear functions whose coefficients are determined from the condition of minimizing the residual functional. To find the corrections at each stage of the iterative process, the Fredholm integral equations of the first kind are solved by means of the Tikhonov method. A series of computational experiments on recovering one and two variable characteristics is conducted. The effect of coupling parameters and input noise on the reconstruction results is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\({\bar{a}}\) :

General designation of dimensionless thermomechanical characteristics

\({\bar{a}}^{0} \) :

Initial approximation for the dimensionless thermomechanical characteristic

\([a_{1},a_{2} ], [b_{1},b_{2} ]\) :

Dimensionless time intervals of the additional data measured under thermal and mechanical loads, respectively

\(c_{\epsilon } \) :

Specific volumetric heat capacity at a constant strain tensor

\({\bar{c}}\) :

Dimensionless specific volumetric heat capacity

\(c_{ijkl} \) :

Elasticity tensor components

\({\bar{c}}_{11} \), \({\bar{c}}_{13} \), \({\bar{c}}_{33} \) :

Dimensionless elasticity tensor components

\(D_{i} =e_{ijkl} u_{k,l} - \epsilon _{ik} \varphi _{,k} +g_{i} \theta \) :

Components of the electric displacement vector

\({\bar{D}}_{r} \) :

Dimensionless radial component of the electric displacement vector

\(\sigma _{ij} =c_{ijkl} u_{k,l} +e_{kij}\varphi _{,k} -\gamma _{ij} \theta \) :

Stress tensor components

\(e_{kij} \) :

Piezoelectric tensor components,

\({\bar{e}}_{31} \), \({\bar{e}}_{33} \) :

Dimensionless piezoelectric tensor components

\(g_{i} \) :

Pyroelectric vector

\({\bar{g}}_{3} \) :

Dimensionless component of the pyroelectric vector

\(H\left( \tau _{1} \right) \) :

The Heaviside function

J :

Dimensionless residual functional in the reconstruction of 2 characteristics

\(J_{1} \), \(J_{2} \) :

Dimensionless residual functionals under thermal and mechanical loads, respectively

\(k_{ij} \) :

Thermal conductivity coefficients

\({\bar{k}}\) :

Dimensionless component of the thermal conductivity tensor

m :

Inhomogeneity parameter

n :

Number of iterations

p :

The dimensionless Laplace transform parameter

\(p_{i} \) :

Mechanical load vector components

\(P_{s}^{*} \) :

The shifted Legendre polynomials

q :

Heat flux density

Q :

Dimensionless heat flux density

\(U_{r} \) :

Dimensionless radial displacement

W :

Dimensionless temperature

\(\beta \) :

Noise amplitude

\(\beta _{1} \), \(\beta _{2} \) :

Dimensionless amplitudes of thermal and mechanical loads, respectively

\(\gamma _{0} \) :

Random variable with a uniform distribution law on the interval \([-1,1]\)

\(\gamma _{ij} \) :

Thermal stress tensor components

\({\bar{\gamma }}_{1} \), \({\bar{\gamma }}_{3} \) :

Dimensionless components of the thermal stress vector

\(\epsilon _{ij} \) :

Permittivity tensor components

\({\bar{\epsilon }}_{3} \) :

Dimensionless component of the permittivity vector

\(\varepsilon _{0} \) :

Ratio of characteristic times of sound (\(t_2\)) and thermal (\(t_1\)) perturbations

\(\chi _{1} \) :

Dimensionless electromechanical coupling parameter

\(\chi _{2} \) :

Dimensionless thermomechanical coupling parameter

\(\chi _{3} \) :

Dimensionless thermoelectric coupling parameter

\(\varphi \) :

Electric potential

\(\varphi \left( \tau _{1} \right) \), \(\phi \left( \tau _{2} \right) \) :

dimensionless laws of change for thermal and mechanical loads, respectively

\(\Phi \) :

Dimensionless electric potential,

\(\theta \) :

Increment of body’s temperature from its natural state with the temperature \(T_{0} \)

\(\rho \) :

Density

\({\bar{\rho }}\) :

Dimensionless density

\(\Omega _{rr} \), \(\Omega _{\varphi \varphi } \) :

dimensionless radial and circumferential components of the stress tensor

\(\tau _{1} \), \(\tau _{2} \) :

Dimensionless time under thermal and mechanical load, respectively,

\(\xi \) :

Dimensionless radial coordinate

\(\xi _{0} \) :

Dimensionless value of cylinder’s inner radius

References

  1. Tauchert, T.R., Ashida, F., Noda, N., Adali, S., Verijenko, V.E.: Developments in thermopiezoelasticity with relevance to smart composite structures. Compos. Struct. 48, 31–38 (2000)

    Article  Google Scholar 

  2. Rao, S.S., Sunar, M.: Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures. AIAA J. 7, 1280–1286 (1993)

    Article  ADS  Google Scholar 

  3. Mindlin, R.D.: On the equations of motion of piezoelectric crystals. Problems in Continuum Mechanics, SIAM, pp. 282–290 (1961)

  4. Mindlin, R.D.: Equations of high frequency, vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10, 625–637 (1974)

    Article  Google Scholar 

  5. Paul, H.S., Raman, G.V.: Wave propagation in a hollow pyroelectric circular cylinder of crystal class 6. Acta Mech. 87, 37–46 (1991)

    Article  Google Scholar 

  6. Ding, H.J., Wang, H.M., Ling, D.S.: Analytical solution of a pyroelectric hollow cylinder for piezothermoelastic axisymmetric dynamic problems. J. Therm. Stress 26, 261–276 (2003)

    Article  Google Scholar 

  7. Shlyakhin, D.A., Kalmova, M.A.: The coupled non-stationary thermo-electro-elasticity problem for a long hollow cylinder. Vestnik Samarskogo Gosudarstvennogo Tekhnichescogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki 24(4), 677–691 (2020). (in Russian)

  8. Wang, B.L., Noda, N.: Design of a smart functionally graded thermopiezoelectric composite structure. Smart. Mater. Struct. 10, 189–193 (2001)

    Article  ADS  Google Scholar 

  9. Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29(6), 1365–1374 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chirilă, A., Marin, M., Montanaro, A.: On adaptive thermo-electro-elasticity within a Green–Naghdi type II or III theory. Contin. Mech. Thermodyn. 31(5), 1453–1475 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Vatulyan, A., Nesterov, S., Nedin, R.: Regarding some thermoelastic models of “coating-substrate’’ system deformation. Contin. Mech. Thermodyn. 32(4), 1173–1186 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Abo-Dahab, S.M., Abouelregal, A.E., Marin, M.: Generalized thermoelastic functionally graded on a thin slim strip non-gaussian laser beam. Symmetry 12(7), 1–16 (2020)

    Article  Google Scholar 

  13. Ootao, Y., Akai, T., Tanigawa, Y.: Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow cylinder. J. Therm. Stress 31(10), 935–955 (2008)

    Article  Google Scholar 

  14. Babaei, M.H., Chen, Z.T.: The transient coupled thermo-piezoelectric hollow cylinder to dynamic loadings response of a functionally graded piezoelectric. Proc. R. Soc. Lond. Ser. A 466, 1077–1091 (2010)

    ADS  Google Scholar 

  15. Shahani, A.R., Sharifi Torki, H.: Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity. Contin. Mech. Thermodyn. 30(3), 509–527 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Huang, H., Rao, D.: Thermal buckling of functionally graded cylindrical shells with temperature-dependent elastoplastic properties. Contin. Mech. Thermodyn. 32(5), 1403–1415 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ashida, F., Tauchert, T.R., Sakata, S.I., Igi, Y.: Inverse problem of a piezothermoelastic cylinder subject to transient heating. J. Therm. Stress 33(7), 706–718 (2010)

    Article  Google Scholar 

  18. Ying, C., Zhifei, S.: Exact solutions of functionally gradient piezothermoelastic cantilevers and parameter identification. J. Intell. Mater. Syst. Struct., 1–10 (2005)

  19. Chen, Y., Shi, Z.-F.: Analysis of a functionally graded piezothermoelastic hollow cylinder. J. Zhejiang Univ. Sci. A 6, 956–961 (2005)

    Article  Google Scholar 

  20. Vatulyan, A., Nesterov, S., Nedin, R.: Some features of solving an inverse problem on identification of material properties of functionally graded pyroelectrics. Int. J. Heat Mass Transf. 128, 1157–1167 (2019)

    Article  Google Scholar 

  21. Vatulyan, A.O., Nesterov, S.A.: On determination of inhomogeneous thermomechanical characteristics of a pipe. J. Eng. Phys. Thermophys. 88(4), 984–993 (2015)

    Article  Google Scholar 

  22. Nedin, R.D., Nesterov, S.A., Vatulyan, A.O.: Concerning identification of two thermomechanical character. advanced structured materials. Advanced Structured Materials. Solid Mechanics, Theory of Elasticity and Creep 185, 247–264 (2023)

  23. Vatulyan, A.O., Nesterov, S.A.: On determination of the thermomechanical characteristics of a functionally graded finite cylinder. Mech. Solids 56(7), 1429–1438 (2021)

    Article  ADS  Google Scholar 

  24. Krylov, V.I., Skoblya, N.S.: Methods for the Approximate Fourier Transform and the Laplace Transform Inversion. Nauka, Moscow (1974). ([in Russian])

    Google Scholar 

  25. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-posed Problems. Kluwer, Dordrecht (1995)

    Book  Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Science Foundation, Grant No. 22-11-00265, https://rscf.ru/project/22-11-00265/, at the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rostislav Nedin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatulyan, A., Nesterov, S. & Nedin, R. Variable properties reconstruction for functionally graded thermoelectroelastic cylinder. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01292-6

Keywords

Navigation