Skip to main content
Log in

Heterostructure of a 2.5 THz Range Quantum-Cascade Detector

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The design of the heterostructure of a 2.5 THz range quantum-cascade detector is proposed and heterostructure is grown by molecular-beam epitaxy technique. To optimize the thicknesses of the layers of the heterostructure cascades, a numerical method for iterative solution of the Schrödinger–Poisson equation in the kp formalism was used. The grown heterostructure of the quantum-cascade detector showed a high structural perfection, confirmed by the small values of the average FWHM of the high-order satellite peaks on the X-ray diffraction rocking curves, which were (8.3 ± 0. 5)n. Analysis of dark-field images obtained by transmission electron microscopy showed that the total thickness of the layers in the cascade is 137.3 ± 6.9 nm, which corresponds to the calculated thickness of the layers in the cascade of the heterostructure of the quantum-cascade detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, P. De Natale. Sensors, 13 (3), 3331 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. G.-R. Kim, T. -I. Jeon, D. Grischkowsky. Opt. Express, 25 (21), 25422 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, P. De Natale. Sci. Rep., 5 (1), 13566 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. N. Rothbart, O. Holz, R. Koczulla, K. Schmalz, H.‑W. Hubers. Sensors, 19 (12), 2719 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. P. U. Jepsen, D. G. Cooke, M. Koch. Laser Photon. Rev., 5 (1), 124 (2010).

    Article  ADS  Google Scholar 

  6. A. Khalatpour, A. K. Paulsen, C. Deimert, Z. R. Wasilewski, Q. Hu. Nature Photonics, 15 (1), 16 (2020).

    Article  ADS  Google Scholar 

  7. A. Vardi, N. Kheiro din, L. Nevou, H. Machhadani, L. Vivien, P. Crozat, M. Tchernycheva, R. Colombelli, F. H. Julien, F. Guillot, C. Bougerol, E. Monroy, S. Schacham, G. Bahir. Appl. Phys. Lett., 93 (19), 193509 (2008).

    Article  ADS  Google Scholar 

  8. M. Hakl, Q. Lin, S. Lepillet, M. Billet, J.-F. Lampin, S. Pirotta, R. Colombelli, W. Wan, J. C. Cao, H. Li, E. Peytavit, S. Barbieri. ACS Photonics, 8 (2), 464 (2021).

    Article  CAS  Google Scholar 

  9. D. Palaferri, Y. Todorov, Y.N. Chen, J. Madeo, A. Vasanelli, L.H. Li, A.G. Davies, E. H. Linfield, C. Sirtori. Appl. Phys. Lett., 106 (16), 161102 (2015).

    Article  ADS  Google Scholar 

  10. H. Li, W.-J. Wan, Z.-Y. Tan, Z.-L. Fu, H.-X. Wang, T. Zhou, Z.-P. Li, C. Wang, X.-G. Guo, J.-C. Cao. Sci. Rep., 7 (1), 3452 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  11. B. Paulillo, S. Pirotta, H. Nong, P. Crozat, S. Guilet, G. Xu, S. Dhillon, L. H. Li, A. G. Davies, E. H. Linfield, R. Colombelli. Optica, 4 (12), 1451 (2017).

    Article  CAS  ADS  Google Scholar 

  12. P. Micheletti, J. Faist, T. Olariu, U. Senica, M. Beck, G. Scalari. APL Phot. Optica, 6, 106102 (2021).

    CAS  Google Scholar 

  13. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies. Appl. Phys. Lett., 84 (4), 475 (2004).

    Article  CAS  ADS  Google Scholar 

  14. J. Popp, M. Haider, M. Franckie, J. Faist, C. Jirauschek. In: 2020 Int. Conf. on Numerical Simulation of Optoelectronic Devices (NUSOD) (Turin, Italy, 2020). https://doi.org/10.1109/NUSOD49422.2020.9217784

  15. J. Popp, M. Haider, M. Franckie, J. Faist, C. Jirauschek. In: 2020 XXXIIIrd General Assembly and Scientific Symposium of the Int. Union of Radio Science (Rome, Italy, 2020). https://doi.org/10.23919/URSIGASS49373.2020.9232167

  16. J. Popp, M. Haider, M. Franckie, J. Faist, C. Jirauschek. Opt. Quant. Electron., 53 (6), 287 (2021).

    Article  Google Scholar 

  17. link: https://www.nextnano.de/. Accepted date: 21.09.2021.

  18. A. V. Babichev, V. V. Dudelev, A. G. Gladyshev, D. A. Mikhailov, A. S. Kurochkin, E. S. Kolodeznyi, V. E. Bougrov, V. N. Nevedomskiy, L. Y. Karachinsky, I. I. Novikov, D. V. Denisov, A. S. Ionov, S. O. Slipchenko, A. V. Lutetskiy, N. A. Pikhtin, G. S. Sokolovskii, A. Y. Egorov. Techn. Phys. Lett., 45 (7), 735 (2019).

    Article  CAS  ADS  Google Scholar 

  19. A. V. Babichev, A. S. Kurochkin, E. C. Kolodeznyi, A. V. Filimonov, A. A. Usikova, V. N. Nevedomsky, A. G. Gladyshev, L. Y. Karachinsky, I. I. Novikov, A. Y. Egorov. Semiconductors, 52 (6), 745 (2018).

    Article  CAS  ADS  Google Scholar 

  20. A. E. Zhukov, G. E. Cirlin, R. R. Reznik, Y. B. Samsonenko, A. I. Khrebtov, M. A. Kaliteevski, K. A. Ivanov, N. V. Kryzhanovskaya, M. V. Maximov, Z. I. Alferov. Semiconductors, 50 (5), 662 (2016).

    Article  CAS  ADS  Google Scholar 

  21. G. E. Cirlin, R. R. Reznik, A. E. Zhukov, R. A. Khabibullin, K. V. Maremyanin, V. I. Gavrilenko, S. V. Morozov. Semiconductors, 54 (9), 1092 (2020).

    Article  CAS  ADS  Google Scholar 

  22. H. E. Beere, J. R. Freeman, O. P. Marshall, C. H. Worrall, D. Ritchie. J. Cryst. Growth, 311 (7), 1923 (2009).

    Article  CAS  ADS  Google Scholar 

  23. X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, S. Duan. AIP Adv., 6 (7), 075210 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The research was supported by a financial grant provided by the Russian Science Foundation (project No. 20-79-10285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Babichev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babichev, A.V., Kolodeznyi, E.S., Gladyshev, A.G. et al. Heterostructure of a 2.5 THz Range Quantum-Cascade Detector. Semiconductors 57, 440–444 (2023). https://doi.org/10.1134/S1063782623050019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623050019

Keywords:

Navigation